dmbc_fit {dmbc} | R Documentation |
Fitter function for DMBC models.
Description
dmbc_fit()
is the main function that estimates a DMBC model.
Usage
dmbc_fit(D, p, G, family, control, prior, start)
Arguments
D |
A list whose elements are the dissimilarity matrices corresponding
to the judgments expressed by the S subjects/raters. These matrices
must be defined as a |
p |
A length-one numeric vector indicating the number of dimensions of the latent space. |
G |
A length-one numeric vector indicating the number of cluster to partition the S subjects. |
family |
A length-one character vector representing the type of data to analyze. Currently, it accepts only the 'binomial' value, but future developments will include the possibility to analyze continuous, multinomial and count data. |
control |
A list of control parameters that affect the sampling
but do not affect the posterior distribution See
|
prior |
A list containing the prior hyperparameters. See
|
start |
A named list of starting values for the MCMC algorithm (see
|
Value
A dmbc_fit_list
object.
Author(s)
Sergio Venturini sergio.venturini@unicatt.it
References
Venturini, S., Piccarreta, R. (2021), "A Bayesian Approach for Model-Based
Clustering of Several Binary Dissimilarity Matrices: the dmbc
Package in R
", Journal of Statistical Software, 100, 16, 1–35, <10.18637/jss.v100.i16>.
See Also
dmbc_data
for a description of the data format.
dmbc_fit_list
for a description of the elements
included in the returned object.
Examples
## Not run:
data(simdiss, package = "dmbc")
G <- 3
p <- 2
prm.prop <- list(z = 1.5, alpha = .75)
burnin <- 20000
nsim <- 10000
seed <- 2301
set.seed(seed)
control <- list(burnin = burnin, nsim = nsim, z.prop = prm.prop[["z"]],
alpha.prop = prm.prop[["alpha"]], random.start = TRUE, verbose = TRUE,
nchains = 2, thin = 10, store.burnin = TRUE, threads = 2,
parallel = "snow")
sim.dmbc <- dmbc(simdiss, p, G, control)
summary(sim.dmbc, include.burnin = FALSE)
library(bayesplot)
library(ggplot2)
color_scheme_set("teal")
plot(sim.dmbc, what = "trace", regex_pars = "eta")
z <- dmbc_get_configuration(sim.dmbc, chain = 1, est = "mean",
labels = 1:16)
summary(z)
color_scheme_set("mix-pink-blue")
graph <- plot(z, size = 2, size_lbl = 3)
graph + panel_bg(fill = "gray90", color = NA)
## End(Not run)