| dmbc_fit-class {dmbc} | R Documentation |
An S4 class to represent the results of fitting DMBC model.
Description
An S4 class to represent the results of fitting DMBC model using a single Markov Chain Monte Carlo chain.
Slots
z.chainAn object of class
array; posterior draws from the MCMC algorithm for the (untransformed) latent configurationZ.z.chain.pAn object of class
array; posterior draws from the MCMC algorithm for the (Procrustes-transformed) latent configurationZ.alpha.chainAn object of class
matrix; posterior draws from the MCMC algorithm for the\alphaparameters.eta.chainAn object of class
matrix; posterior draws from the MCMC algorithm for the\etaparameters.sigma2.chainAn object of class
matrix; posterior draws from the MCMC algorithm for the\sigma^2parameters.lambda.chainAn object of class
matrix; posterior draws from the MCMC algorithm for the\lambdaparameters.prob.chainAn object of class
array; posterior draws from the MCMC algorithm for the cluster membership probabilities.x.ind.chainAn object of class
array; posterior draws from the MCMC algorithm for the cluster membership indicators.x.chainAn object of class
matrix; posterior draws from the MCMC algorithm for the cluster membership labels.acceptAn object of class
matrix; final acceptance rates for the MCMC algorithm.dissAn object of class
list; list of observed dissimilarity matrices.densAn object of class
list; list of log-likelihood, log-prior and log-posterior values at each iteration of the MCMC simulation.controlAn object of class
list; list of the control parameters (number of burnin and sample iterations, number of MCMC chains, etc.). Seedmbc_control()for more information.priorAn object of class
list; list of the prior hyperparameters. Seedmbc_prior()for more information.dimAn object of class
list; list of dimensions for the estimated model, i.e. number of objects (n), number of latent dimensions (p), number of clusters (G), and number of subjects (S).modelAn object of class
dmbc_model.
References
Venturini, S., Piccarreta, R. (2021), "A Bayesian Approach for Model-Based
Clustering of Several Binary Dissimilarity Matrices: the dmbc
Package in R", Journal of Statistical Software, 100, 16, 1–35, <10.18637/jss.v100.i16>.
Examples
showClass("dmbc_fit")