dmbc_fit-class {dmbc} | R Documentation |
An S4 class to represent the results of fitting DMBC model using a single Markov Chain Monte Carlo chain.
z.chain
An object of class array
; posterior draws from
the MCMC algorithm for the (untransformed) latent configuration Z
.
z.chain.p
An object of class array
; posterior draws from
the MCMC algorithm for the (Procrustes-transformed) latent configuration
Z
.
alpha.chain
An object of class matrix
; posterior draws
from the MCMC algorithm for the \alpha
parameters.
eta.chain
An object of class matrix
; posterior draws
from the MCMC algorithm for the \eta
parameters.
sigma2.chain
An object of class matrix
; posterior draws
from the MCMC algorithm for the \sigma^2
parameters.
lambda.chain
An object of class matrix
; posterior draws
from the MCMC algorithm for the \lambda
parameters.
prob.chain
An object of class array
; posterior draws
from the MCMC algorithm for the cluster membership probabilities.
x.ind.chain
An object of class array
; posterior draws
from the MCMC algorithm for the cluster membership indicators.
x.chain
An object of class matrix
; posterior draws from
the MCMC algorithm for the cluster membership labels.
accept
An object of class matrix
; final acceptance rates
for the MCMC algorithm.
diss
An object of class list
; list of observed
dissimilarity matrices.
dens
An object of class list
; list of log-likelihood,
log-prior and log-posterior values at each iteration of the MCMC simulation.
control
An object of class list
; list of the control
parameters (number of burnin and sample iterations, number of MCMC chains,
etc.). See dmbc_control()
for more information.
prior
An object of class list
; list of the prior
hyperparameters. See dmbc_prior()
for more information.
dim
An object of class list
; list of dimensions for
the estimated model, i.e. number of objects (n), number of latent
dimensions (p), number of clusters (G), and number of
subjects (S).
model
An object of class dmbc_model
.
Venturini, S., Piccarreta, R. (2021), "A Bayesian Approach for Model-Based
Clustering of Several Binary Dissimilarity Matrices: the dmbc
Package in R
", Journal of Statistical Software, 100, 16, 1–35, <10.18637/jss.v100.i16>.
showClass("dmbc_fit")