dmbc {dmbc} | R Documentation |
Estimation of a DMBC model.
Description
dmbc()
, the main function of the package, estimates a DMBC model
for a given set of S dissimilarity matrices.
Usage
dmbc(
data,
p = 2,
G = 3,
control = dmbc_control(),
prior = NULL,
cl = NULL,
post_all = FALSE
)
Arguments
data |
An object of class |
p |
A length-one numeric vector indicating the number of dimensions of the latent space. |
G |
A length-one numeric vector indicating the number of cluster to partition the S subjects. |
control |
A list of control parameters that affect the sampling
but do not affect the posterior distribution. See
|
prior |
A list containing the prior hyperparameters. See
|
cl |
An optional parallel or snow cluster for use if
|
post_all |
A length-one logical vector, which if TRUE applies a further post-processing to the simulated chains (in case these are more than one). |
Value
A dmbc_fit_list
object.
Author(s)
Sergio Venturini sergio.venturini@unicatt.it
References
Venturini, S., Piccarreta, R. (2021), "A Bayesian Approach for Model-Based
Clustering of Several Binary Dissimilarity Matrices: the dmbc
Package in R
", Journal of Statistical Software, 100, 16, 1–35, <10.18637/jss.v100.i16>.
See Also
bmds
for Bayesian (metric) multidimensional scaling.
dmbc_data
for a description of the data format.
dmbc_fit_list
for a description of the elements
included in the returned object.
Examples
## Not run:
data(simdiss, package = "dmbc")
G <- 3
p <- 2
prm.prop <- list(z = 1.5, alpha = .75)
burnin <- 20000
nsim <- 10000
seed <- 2301
set.seed(seed)
control <- list(burnin = burnin, nsim = nsim, z.prop = prm.prop[["z"]],
alpha.prop = prm.prop[["alpha"]], random.start = TRUE, verbose = TRUE,
nchains = 2, thin = 10, store.burnin = TRUE, threads = 2,
parallel = "snow")
sim.dmbc <- dmbc(simdiss, p, G, control)
summary(sim.dmbc, include.burnin = FALSE)
library(bayesplot)
library(ggplot2)
color_scheme_set("teal")
plot(sim.dmbc, what = "trace", regex_pars = "eta")
z <- dmbc_get_configuration(sim.dmbc, chain = 1, est = "mean",
labels = 1:16)
summary(z)
color_scheme_set("mix-pink-blue")
graph <- plot(z, size = 2, size_lbl = 3)
graph + panel_bg(fill = "gray90", color = NA)
## End(Not run)