| dlmMLE {dlm} | R Documentation |
Parameter estimation by maximum likelihood
Description
The function returns the MLE of unknown parameters in the specification of a state space model.
Usage
dlmMLE(y, parm, build, method = "L-BFGS-B", ..., debug = FALSE)
Arguments
y |
a vector, matrix, or time series of data. |
parm |
vector of initial values - for the optimization routine - of the unknown parameters. |
build |
a function that takes a vector of the same length as
|
method |
passed to |
... |
additional arguments passed to |
debug |
if |
Details
The evaluation of the loglikelihood is done by dlmLL.
For the optimization, optim is called. It is possible for the
model to depend on additional parameters, other than those in
parm, passed to build via the ... argument.
Value
The function dlmMLE returns the value returned by optim.
Warning
The build argument must return a dlm with nonsingular
observation variance V.
Author(s)
Giovanni Petris GPetris@uark.edu
References
Giovanni Petris (2010), An R Package for Dynamic Linear
Models. Journal of Statistical Software, 36(12), 1-16.
https://www.jstatsoft.org/v36/i12/.
Petris, Petrone, and Campagnoli, Dynamic Linear Models with
R, Springer (2009).
See Also
Examples
data(NelPlo)
### multivariate local level -- seemingly unrelated time series
buildSu <- function(x) {
Vsd <- exp(x[1:2])
Vcorr <- tanh(x[3])
V <- Vsd %o% Vsd
V[1,2] <- V[2,1] <- V[1,2] * Vcorr
Wsd <- exp(x[4:5])
Wcorr <- tanh(x[6])
W <- Wsd %o% Wsd
W[1,2] <- W[2,1] <- W[1,2] * Wcorr
return(list(
m0 = rep(0,2),
C0 = 1e7 * diag(2),
FF = diag(2),
GG = diag(2),
V = V,
W = W))
}
suMLE <- dlmMLE(NelPlo, rep(0,6), buildSu); suMLE
buildSu(suMLE$par)[c("V","W")]
StructTS(NelPlo[,1], type="level") ## compare with W[1,1] and V[1,1]
StructTS(NelPlo[,2], type="level") ## compare with W[2,2] and V[2,2]
## multivariate local level model with homogeneity restriction
buildHo <- function(x) {
Vsd <- exp(x[1:2])
Vcorr <- tanh(x[3])
V <- Vsd %o% Vsd
V[1,2] <- V[2,1] <- V[1,2] * Vcorr
return(list(
m0 = rep(0,2),
C0 = 1e7 * diag(2),
FF = diag(2),
GG = diag(2),
V = V,
W = x[4]^2 * V))
}
hoMLE <- dlmMLE(NelPlo, rep(0,4), buildHo); hoMLE
buildHo(hoMLE$par)[c("V","W")]