arms {dlm} R Documentation

## Function to perform Adaptive Rejection Metropolis Sampling

### Description

Generates a sequence of random variables using ARMS. For multivariate densities, ARMS is used along randomly selected straight lines through the current point.

### Usage

```arms(y.start, myldens, indFunc, n.sample, ...)
```

### Arguments

 `y.start` initial point `myldens` univariate or multivariate log target density `indFunc` indicator function of the convex support of the target density `n.sample` desired sample size `...` parameters passed to `myldens` and `indFunc`

### Details

Strictly speaking, the support of the target density must be a bounded convex set. When this is not the case, the following tricks usually work. If the support is not bounded, restrict it to a bounded set having probability practically one. A workaround, if the support is not convex, is to consider the convex set generated by the support and define `myldens` to return `log(.Machine\$double.xmin)` outside the true support (see the last example.)

The next point is generated along a randomly selected line through the current point using arms.

Make sure the value returned by `myldens` is never smaller than `log(.Machine\$double.xmin)`, to avoid divisions by zero.

### Value

An `n.sample` by `length(y.start)` matrix, whose rows are the sampled points.

### Note

The function is based on original C code by W. Gilks for the univariate case.

### Author(s)

Giovanni Petris GPetris@uark.edu

### References

Gilks, W.R., Best, N.G. and Tan, K.K.C. (1995) Adaptive rejection Metropolis sampling within Gibbs sampling (Corr: 97V46 p541-542 with Neal, R.M.), Applied Statistics 44:455–472.

### Examples

```#### ==> Warning: running the examples may take a few minutes! <== ####
## Not run:
set.seed(4521222)
### Univariate densities
## Unif(-r,r)
y <- arms(runif(1,-1,1), function(x,r) 1, function(x,r) (x>-r)*(x<r), 5000, r=2)
summary(y); hist(y,prob=TRUE,main="Unif(-r,r); r=2")
## Normal(mean,1)
norldens <- function(x,mean) -(x-mean)^2/2
y <- arms(runif(1,3,17), norldens, function(x,mean) ((x-mean)>-7)*((x-mean)<7),
5000, mean=10)
summary(y); hist(y,prob=TRUE,main="Gaussian(m,1); m=10")
curve(dnorm(x,mean=10),3,17,add=TRUE)
## Exponential(1)
y <- arms(5, function(x) -x, function(x) (x>0)*(x<70), 5000)
summary(y); hist(y,prob=TRUE,main="Exponential(1)")
curve(exp(-x),0,8,add=TRUE)
## Gamma(4.5,1)
y <- arms(runif(1,1e-4,20), function(x) 3.5*log(x)-x,
function(x) (x>1e-4)*(x<20), 5000)
summary(y); hist(y,prob=TRUE,main="Gamma(4.5,1)")
curve(dgamma(x,shape=4.5,scale=1),1e-4,20,add=TRUE)
## Gamma(0.5,1) (this one is not log-concave)
y <- arms(runif(1,1e-8,10), function(x) -0.5*log(x)-x,
function(x) (x>1e-8)*(x<10), 5000)
summary(y); hist(y,prob=TRUE,main="Gamma(0.5,1)")
curve(dgamma(x,shape=0.5,scale=1),1e-8,10,add=TRUE)
## Beta(.2,.2) (this one neither)
y <- arms(runif(1), function(x) (0.2-1)*log(x)+(0.2-1)*log(1-x),
function(x) (x>1e-5)*(x<1-1e-5), 5000)
summary(y); hist(y,prob=TRUE,main="Beta(0.2,0.2)")
curve(dbeta(x,0.2,0.2),1e-5,1-1e-5,add=TRUE)
## Triangular
y <- arms(runif(1,-1,1), function(x) log(1-abs(x)), function(x) abs(x)<1, 5000)
summary(y); hist(y,prob=TRUE,ylim=c(0,1),main="Triangular")
curve(1-abs(x),-1,1,add=TRUE)
## Multimodal examples (Mixture of normals)
lmixnorm <- function(x,weights,means,sds) {
log(crossprod(weights, exp(-0.5*((x-means)/sds)^2 - log(sds))))
}
y <- arms(0, lmixnorm, function(x,...) (x>(-100))*(x<100), 5000, weights=c(1,3,2),
means=c(-10,0,10), sds=c(1.5,3,1.5))
summary(y); hist(y,prob=TRUE,main="Mixture of Normals")
curve(colSums(c(1,3,2)/6*dnorm(matrix(x,3,length(x),byrow=TRUE),c(-10,0,10),c(1.5,3,1.5))),
par("usr")[1], par("usr")[2], add=TRUE)

### Bivariate densities
## Bivariate standard normal
y <- arms(c(0,2), function(x) -crossprod(x)/2,
function(x) (min(x)>-5)*(max(x)<5), 500)
plot(y, main="Bivariate standard normal", asp=1)
## Uniform in the unit square
y <- arms(c(0.2,.6), function(x) 1,
function(x) (min(x)>0)*(max(x)<1), 500)
plot(y, main="Uniform in the unit square", asp=1)
polygon(c(0,1,1,0),c(0,0,1,1))
## Uniform in the circle of radius r
y <- arms(c(0.2,0), function(x,...) 1,
function(x,r2) sum(x^2)<r2, 500, r2=2^2)
plot(y, main="Uniform in the circle of radius r; r=2", asp=1)
curve(-sqrt(4-x^2), -2, 2, add=TRUE)
curve(sqrt(4-x^2), -2, 2, add=TRUE)
## Uniform on the simplex
simp <- function(x) if ( any(x<0) || (sum(x)>1) ) 0 else 1
y <- arms(c(0.2,0.2), function(x) 1, simp, 500)
plot(y, xlim=c(0,1), ylim=c(0,1), main="Uniform in the simplex", asp=1)
polygon(c(0,1,0), c(0,0,1))
## A bimodal distribution (mixture of normals)
bimodal <- function(x) { log(prod(dnorm(x,mean=3))+prod(dnorm(x,mean=-3))) }
y <- arms(c(-2,2), bimodal, function(x) all(x>(-10))*all(x<(10)), 500)
plot(y, main="Mixture of bivariate Normals", asp=1)

## A bivariate distribution with non-convex support
support <- function(x) {
return(as.numeric( -1 < x[2] && x[2] < 1 &&
-2 < x[1] &&
( x[1] < 1 || crossprod(x-c(1,0)) < 1 ) ) )
}
Min.log <- log(.Machine\$double.xmin) + 10
logf <- function(x) {
if ( x[1] < 0 ) return(log(1/4))
else
if (crossprod(x-c(1,0)) < 1 ) return(log(1/pi))
return(Min.log)
}
x <- as.matrix(expand.grid(seq(-2.2,2.2,length=40),seq(-1.1,1.1,length=40)))
y <- sapply(1:nrow(x), function(i) support(x[i,]))
plot(x,type='n',asp=1)
points(x[y==1,],pch=1,cex=1,col='green')
z <- arms(c(0,0), logf, support, 1000)
points(z,pch=20,cex=0.5,col='blue')
polygon(c(-2,0,0,-2),c(-1,-1,1,1))
curve(-sqrt(1-(x-1)^2),0,2,add=TRUE)
curve(sqrt(1-(x-1)^2),0,2,add=TRUE)
sum( z[,1] < 0 ) # sampled points in the square
sum( apply(t(z)-c(1,0),2,crossprod) < 1 ) # sampled points in the circle

## End(Not run)
```

[Package dlm version 1.1-5 Index]