dlvs {dlbayes} | R Documentation |
Title Do Bayesian variable selection via penalized credible region
Description
This is a function using the algorithm doing variable selection via penalized credible interval proposed by Bondell et al. (2012). The computation of the proposed sequence is doing matrix computing and using existing LASSO software.
Usage
dlvs(dlresult)
Arguments
dlresult |
Posterior samples of beta. A large matrix (nmc/thin)*p |
Value
betatil |
Variable selection result of beta, a p*1 vector. Most of the values shrinks to 0 |
Examples
{
p=30
n=5
#generate x
x=matrix(rnorm(n*p),nrow=n)
#generate beta
beta=c(rep(0,10),runif(n=5,min=-1,max=1),rep(0,10),runif(n=5,min=-1,max=1))
#generate y
y=x%*%beta+rnorm(n)
hyper=dlhyper(x,y)
dlresult=dl(x,y,hyper=hyper)
dlvs(dlresult)
}
[Package dlbayes version 0.1.0 Index]