dlhyper {dlbayes} | R Documentation |
Tune the hyperparameter in the prior distribtuion
Description
This function is to tune the value of hyperparameter in the prior, which can be [1/max(n,p),1/2]. We use the method proposed by Zhang et al. (2018). This method tune the hyperparameter by incorporating a prior on R^2. And they give a direct way to minimize KL directed divergence for special condition.
Usage
dlhyper(x, y)
Arguments
x |
input matrix, each row is an observation vector, dimension n*p. Same as the argument in dlmain |
y |
Response variable, a n*1 vector. Same as the argument in dlmain |
Value
hyper |
A value that can use in the following posterior computation |
Examples
p=50
n=6
#generate x
x=matrix(rnorm(n*p),nrow=n)
#generate beta
beta=c(rep(0,10),runif(n=5,min=-1,max=1),rep(0,10),runif(n=5,min=-1,max=1),rep(0,p-30))
#generate y
y=x%*%beta+rnorm(n)
hyper=dlhyper(x,y)
[Package dlbayes version 0.1.0 Index]