values {diverse} | R Documentation |
Pre-process the raw data
Description
Allows to filter, binarize and/or normalize raw data. Also filter and binarization is available.
Usage
values(data, category_row = FALSE, norm = NULL, filter = NULL,
binary = FALSE)
Arguments
data |
A numeric matrix with entities |
category_row |
A flag to indicate that categories are in the rows. The analysis assumes that the categories are in the columns of the matrix. If the categories are in the rows and the entities in the columns, then the argument "category_row" has to be set to TRUE. The default value is FALSE. |
norm |
Methods to compute normalized values. Possible values are 'p', 'proportions', 'rca', 'rca_norm' and 'ai'. RCA refers to Revealed Comparative Advantages [Balassa 1986], rca_norm normalizes the RCAs between -1 and with 1, ai refers to the Activity Index. |
filter |
A threshold below which values are replaced with NA. |
binary |
A boolean value to indicate if values distinct from NA are replaced with 1. |
Details
If the three arguments 'norm', 'filter' and 'binary' are used, then the same sequential order is applied in the calculations.
Value
A matrix with the raw, normalized, filtered and\/or binarized data.
References
Balassa, B. (1986). Comparative advantage in manufactured goods: a reappraisal. The Review of Economics and Statistics, 315-319.
Examples
#raw values
values(data=pantheon)
values(data = scidat)
#proportions
values(data = scidat, norm='p')
#revealed comparative advantages
values(data = scidat, norm='rca')
values(data = scidat, norm='rca', filter=1)
values(data = scidat, norm='rca', filter=1, binary=TRUE)