weibull {distributionsrd} | R Documentation |
The Weibull distribution
Description
Raw moments for the Weibull distribution.
Usage
mweibull(r = 0, truncation = 0, shape = 2, scale = 1, lower.tail = TRUE)
Arguments
r |
rth raw moment of the distribution, defaults to 1. |
truncation |
lower truncation parameter, defaults to 0. |
shape , scale |
shape and scale of the distribution with default values of 2 and 1 respectively. |
lower.tail |
logical; if TRUE (default), moments are |
Details
Probability and Cumulative Distribution Function:
f(x) = \frac{shape}{scale}(\frac{\omega}{scale})^{shape-1}e^{-(\frac{\omega}{scale})^shape} , \qquad F_X(x) = 1-e^{-(\frac{\omega}{scale})^shape}
The y-bounded r-th raw moment of the distribution equals:
\mu^r_y = scale^{r} \Gamma(\frac{r}{shape} +1, (\frac{y}{scale})^shape )
where \Gamma(,)
denotes the upper incomplete gamma function.
Value
returns the truncated rth raw moment of the distribution.
Examples
## The zeroth truncated moment is equivalent to the probability function
pweibull(2, shape = 2, scale = 1)
mweibull(truncation = 2)
## The (truncated) first moment is equivalent to the mean of a (truncated) random sample,
#for large enough samples.
x <- rweibull(1e5, shape = 2, scale = 1)
mean(x)
mweibull(r = 1, lower.tail = FALSE)
sum(x[x > quantile(x, 0.1)]) / length(x)
mweibull(r = 1, truncation = quantile(x, 0.1), lower.tail = FALSE)
[Package distributionsrd version 0.0.6 Index]