lnorm {distributionsrd} | R Documentation |
The Lognormal distribution
Description
Raw moments for the Lognormal distribution.
Usage
mlnorm(r = 0, truncation = 0, meanlog = -0.5, sdlog = 0.5, lower.tail = TRUE)
Arguments
r |
rth raw moment of the distribution, defaults to 1. |
truncation |
lower truncation parameter, defaults to 0. |
meanlog , sdlog |
mean and standard deviation of the distribution on the log scale with default values of 0 and 1 respectively. |
lower.tail |
logical; if TRUE (default), moments are |
Details
Probability and Cumulative Distribution Function:
f(x) = \frac{1}{{x Var \sqrt {2\pi } }}e^{- (lnx - \mu )^2/ 2Var^2} , \qquad F_X(x) = \Phi(\frac{lnx- \mu}{Var})
The y-bounded r-th raw moment of the Lognormal distribution equals:
\mu^r_y = e^{\frac{r (rVar^2 + 2\mu)}{2}}[1-\Phi(\frac{lny - (rVar^2 + \mu)}{Var})]
Value
Provides the y-bounded, rth raw moment of the distribution.
Examples
## The zeroth truncated moment is equivalent to the probability function
plnorm(2, meanlog = -0.5, sdlog = 0.5)
mlnorm(truncation = 2)
## The (truncated) first moment is equivalent to the mean of a (truncated) random sample,
#for large enough samples.
x <- rlnorm(1e5, meanlog = -0.5, sdlog = 0.5)
mean(x)
mlnorm(r = 1, lower.tail = FALSE)
sum(x[x > quantile(x, 0.1)]) / length(x)
mlnorm(r = 1, truncation = quantile(x, 0.1), lower.tail = FALSE)
[Package distributionsrd version 0.0.6 Index]