gamma {distributionsrd} | R Documentation |
The Gamma distribution
Description
Raw moments for the Gamma distribution.
Usage
mgamma(
r = 0,
truncation = 0,
shape = 2,
rate = 1,
scale = 1/rate,
lower.tail = TRUE
)
Arguments
r |
rth raw moment of the distribution, defaults to 1. |
truncation |
lower truncation parameter, defaults to 0. |
shape , rate , scale |
shape, rate and scale of the distribution with default values of 2 and 1 respectively. |
lower.tail |
logical; if TRUE (default), moments are |
Details
Probability and Cumulative Distribution Function:
f(x) = \frac{1}{s^k\Gamma(k)}\omega^{k-1}e^{-\frac{\omega}{s}},\qquad F_X(x) = \frac{1}{\Gamma(k)}\gamma(k,\frac{\omega}{s})
,
where \Gamma(x)
stands for the upper incomplete gamma function function, while \gamma(s,x)
stands for the lower incomplete Gamma function with upper bound x
.
The y-bounded r-th raw moment of the distribution equals:
\mu^r_y = \frac{s^{r}}{\Gamma(k)} \Gamma\left(r + k , \frac{y}{s} \right)
Value
Provides the truncated rth raw moment of the distribution.
## The zeroth truncated moment is equivalent to the probability function pgamma(2,shape=2,rate=1) mgamma(truncation=2)
## The (truncated) first moment is equivalent to the mean of a (truncated) random sample, #for large enough samples. x = rgamma(1e5,shape=2,rate=1) mean(x) mgamma(r=1,lower.tail=FALSE)
sum(x[x>quantile(x,0.1)])/length(x) mgamma(r=1,truncation=quantile(x,0.1),lower.tail=FALSE)