exp {distributionsrd} | R Documentation |
The Exponential distribution
Description
Raw moments for the exponential distribution.
Usage
mexp(r = 0, truncation = 0, rate = 1, lower.tail = TRUE)
Arguments
r |
rth raw moment of the distribution, defaults to 1. |
truncation |
lower truncation parameter, defaults to 0. |
rate |
rate of the distribution with default values of 1. |
lower.tail |
logical; if TRUE (default), moments are |
Details
Probability and Cumulative Distribution Function:
f(x) = \frac{1}{s}e^{-\frac{\omega}{s}} , \qquad F_X(x) = 1-e^{-\frac{\omega}{s}}
The y-bounded r-th raw moment of the distribution equals:
s^{\sigma_s - 1} \Gamma\left(\sigma_s +1, \frac{y}{s} \right)
where \Gamma(,)
denotes the upper incomplete gamma function.
Value
Returns the truncated rth raw moment of the distribution.
Examples
## The zeroth truncated moment is equivalent to the probability function
pexp(2, rate = 1)
mexp(truncation = 2)
## The (truncated) first moment is equivalent to the mean of a (truncated) random sample,
#for large enough samples.
x <- rexp(1e5, rate = 1)
mean(x)
mexp(r = 1, lower.tail = FALSE)
sum(x[x > quantile(x, 0.1)]) / length(x)
mexp(r = 1, truncation = quantile(x, 0.1), lower.tail = FALSE)
[Package distributionsrd version 0.0.6 Index]