empirical {distributionsrd} | R Documentation |
The empirical distribution
Description
Density, distribution function, quantile function, and raw moments for the empirical distribution.
Usage
dempirical(x, data, log = FALSE)
pempirical(q, data, log.p = FALSE, lower.tail = TRUE)
qempirical(p, data, lower.tail = TRUE, log.p = FALSE)
mempirical(r = 0, data, truncation = NULL, lower.tail = TRUE)
Arguments
x , q |
vector of quantiles |
data |
data vector |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), moments are |
p |
vector of probabilities |
r |
rth raw moment of the Pareto distribution |
truncation |
lower truncation parameter, defaults to NULL. |
Details
The density function is a standard Kernel density estimation for 1e6 equally spaced points. The cumulative Distribution Function:
F_n(x) = \frac{1}{n}\sum_{i=1}^{n}I_{x_i \leq x}
The y-bounded r-th raw moment of the empirical distribution equals:
\mu^{r}_{y} = \frac{1}{n}\sum_{i=1}^{n}I_{x_i \leq x}x^r
Value
dempirical returns the density, pempirical the distribution function, qempirical the quantile function, mempirical gives the rth moment of the distribution or a function that allows to evaluate the rth moment of the distribution if truncation is NULL..
Examples
#'
## Generate random sample to work with
x <- rlnorm(1e5, meanlog = -0.5, sdlog = 0.5)
## Empirical density
plot(x = seq(0, 5, length.out = 100), y = dempirical(x = seq(0, 5, length.out = 100), data = x))
# Compare empirical and parametric quantities
dlnorm(0.5, meanlog = -0.5, sdlog = 0.5)
dempirical(0.5, data = x)
plnorm(0.5, meanlog = -0.5, sdlog = 0.5)
pempirical(0.5, data = x)
qlnorm(0.5, meanlog = -0.5, sdlog = 0.5)
qempirical(0.5, data = x)
mlnorm(r = 0, truncation = 0.5, meanlog = -0.5, sdlog = 0.5)
mempirical(r = 0, truncation = 0.5, data = x)
mlnorm(r = 1, truncation = 0.5, meanlog = -0.5, sdlog = 0.5)
mempirical(r = 1, truncation = 0.5, data = x)
## Demonstration of log functionailty for probability and quantile function
quantile(x, 0.5, type = 1)
qempirical(p = pempirical(q = quantile(x, 0.5, type = 1), data = x, log.p = TRUE),
data = x, log.p = TRUE)
## The zeroth truncated moment is equivalent to the probability function
pempirical(q = quantile(x, 0.5, type = 1), data = x)
mempirical(truncation = quantile(x, 0.5, type = 1), data = x)
## The (truncated) first moment is equivalent to the mean of a (truncated) random sample,
#for large enough samples.
mean(x)
mempirical(r = 1, data = x, truncation = 0, lower.tail = FALSE)
sum(x[x > quantile(x, 0.1)]) / length(x)
mempirical(r = 1, data = x, truncation = quantile(x, 0.1), lower.tail = FALSE)
#'