| dztnbinom {distributions3} | R Documentation | 
The zero-truncated negative binomial distribution
Description
Density, distribution function, quantile function, and random
generation for the zero-truncated negative binomial distribution with
parameters mu and theta (or size).
Usage
dztnbinom(x, mu, theta, size, log = FALSE)
pztnbinom(q, mu, theta, size, lower.tail = TRUE, log.p = FALSE)
qztnbinom(p, mu, theta, size, lower.tail = TRUE, log.p = FALSE)
rztnbinom(n, mu, theta, size)
Arguments
| x | vector of (non-negative integer) quantiles. | 
| mu | vector of (non-negative) negative binomial location parameters. | 
| theta,size | vector of (non-negative) negative binomial overdispersion parameters.
Only  | 
| log,log.p | logical indicating whether probabilities p are given as log(p). | 
| q | vector of quantiles. | 
| lower.tail | logical indicating whether probabilities are  | 
| p | vector of probabilities. | 
| n | number of random values to return. | 
Details
The negative binomial distribution left-truncated at zero (or zero-truncated negative binomial for short) is the distribution obtained, when considering a negative binomial variable Y conditional on Y being greater than zero.
All functions follow the usual conventions of d/p/q/r functions
in base R. In particular, all four ztnbinom functions for the
zero-truncated negative binomial distribution call the corresponding nbinom
functions for the negative binomial distribution from base R internally.
See Also
Examples
## theoretical probabilities for a zero-truncated negative binomial distribution
x <- 0:8
p <- dztnbinom(x, mu = 2.5, theta = 1)
plot(x, p, type = "h", lwd = 2)
## corresponding empirical frequencies from a simulated sample
set.seed(0)
y <- rztnbinom(500, mu = 2.5, theta = 1)
hist(y, breaks = -1:max(y) + 0.5)