pdf {distributions3}R Documentation

Evaluate the probability density of a probability distribution


Generic function for computing probability density function (PDF) contributions based on a distribution object and observed data.


pdf(d, x, drop = TRUE, ...)

log_pdf(d, x, ...)

pmf(d, x, ...)



An object. The package provides methods for distribution objects such as those from Normal() or Binomial() etc.


A vector of elements whose probabilities you would like to determine given the distribution d.


logical. Should the result be simplified to a vector if possible?


Arguments passed to methods. Unevaluated arguments will generate a warning to catch mispellings or other possible errors.


The generic function pdf() computes the probability density, both for continuous and discrete distributions. pmf() (for the probability mass function) is an alias that just calls pdf() internally. For computing log-density contributions (e.g., to a log-likelihood) either pdf(..., log = TRUE) can be used or the generic function log_pdf().


Probabilities corresponding to the vector x.


## distribution object
X <- Normal()
## probability density
pdf(X, c(1, 2, 3, 4, 5))
pmf(X, c(1, 2, 3, 4, 5))
## log-density
pdf(X, c(1, 2, 3, 4, 5), log = TRUE)
log_pdf(X, c(1, 2, 3, 4, 5))

[Package distributions3 version 0.2.1 Index]