| pdf.Cauchy {distributions3} | R Documentation | 
Evaluate the probability mass function of a Cauchy distribution
Description
Evaluate the probability mass function of a Cauchy distribution
Usage
## S3 method for class 'Cauchy'
pdf(d, x, drop = TRUE, elementwise = NULL, ...)
## S3 method for class 'Cauchy'
log_pdf(d, x, drop = TRUE, elementwise = NULL, ...)
Arguments
d | 
 A   | 
x | 
 A vector of elements whose probabilities you would like to
determine given the distribution   | 
drop | 
 logical. Should the result be simplified to a vector if possible?  | 
elementwise | 
 logical. Should each distribution in   | 
... | 
 Arguments to be passed to   | 
Value
In case of a single distribution object, either a numeric
vector of length probs (if drop = TRUE, default) or a matrix with
length(x) columns (if drop = FALSE). In case of a vectorized distribution
object, a matrix with length(x) columns containing all possible combinations.
Examples
set.seed(27)
X <- Cauchy(10, 0.2)
X
mean(X)
variance(X)
skewness(X)
kurtosis(X)
random(X, 10)
pdf(X, 2)
log_pdf(X, 2)
cdf(X, 2)
quantile(X, 0.7)
cdf(X, quantile(X, 0.7))
quantile(X, cdf(X, 7))