Poisson {distributions3} | R Documentation |
Create a Poisson distribution
Description
Poisson distributions are frequently used to model counts.
Usage
Poisson(lambda)
Arguments
lambda |
The shape parameter, which is also the mean and the variance of the distribution. Can be any positive number. |
Details
We recommend reading this documentation on https://alexpghayes.github.io/distributions3/, where the math will render with additional detail.
In the following, let be a Poisson random variable with parameter
lambda
= .
Support:
Mean:
Variance:
Probability mass function (p.m.f):
Cumulative distribution function (c.d.f):
Moment generating function (m.g.f):
Value
A Poisson
object.
See Also
Other discrete distributions:
Bernoulli()
,
Binomial()
,
Categorical()
,
Geometric()
,
HurdleNegativeBinomial()
,
HurdlePoisson()
,
HyperGeometric()
,
Multinomial()
,
NegativeBinomial()
,
ZINegativeBinomial()
,
ZIPoisson()
,
ZTNegativeBinomial()
,
ZTPoisson()
Examples
set.seed(27)
X <- Poisson(2)
X
random(X, 10)
pdf(X, 2)
log_pdf(X, 2)
cdf(X, 4)
quantile(X, 0.7)
cdf(X, quantile(X, 0.7))
quantile(X, cdf(X, 7))