Erlang {distributions3} | R Documentation |
Create an Erlang distribution
Description
The Erlang distribution is a two-parameter family of continuous probability
distributions with support x \in [0,\infty)
.
The two parameters are a positive integer shape parameter k
and a
positive real rate parameter \lambda
.
The Erlang distribution with shape parameter k = 1
simplifies to the
exponential distribution, and it is a special case of the gamma distribution.
It corresponds to a sum of k
independent exponential variables with mean
1 / \lambda
each.
Usage
Erlang(k, lambda)
Arguments
k |
The shape parameter. Can be any positive integer number. |
lambda |
The rate parameter. Can be any positive number. |
Value
An Erlang
object.
See Also
Other continuous distributions:
Beta()
,
Cauchy()
,
ChiSquare()
,
Exponential()
,
FisherF()
,
Frechet()
,
GEV()
,
GP()
,
Gamma()
,
Gumbel()
,
LogNormal()
,
Logistic()
,
Normal()
,
RevWeibull()
,
StudentsT()
,
Tukey()
,
Uniform()
,
Weibull()
Examples
set.seed(27)
X <- Erlang(5, 2)
X
random(X, 10)
pdf(X, 2)
log_pdf(X, 2)
cdf(X, 4)
quantile(X, 0.7)
cdf(X, quantile(X, 0.7))
quantile(X, cdf(X, 7))