Binomial {distributions3} | R Documentation |
Create a Binomial distribution
Description
Binomial distributions are used to represent situations can that can
be thought as the result of Bernoulli experiments (here the
is defined as the
size
of the experiment). The classical
example is independent coin flips, where each coin flip has
probability
p
of success. In this case, the individual probability of
flipping heads or tails is given by the Bernoulli(p) distribution,
and the probability of having equal results (
heads,
for example), in
trials is given by the Binomial(n, p) distribution.
The equation of the Binomial distribution is directly derived from
the equation of the Bernoulli distribution.
Usage
Binomial(size, p = 0.5)
Arguments
size |
The number of trials. Must be an integer greater than or equal
to one. When |
p |
The success probability for a given trial. |
Details
The Binomial distribution comes up when you are interested in the portion
of people who do a thing. The Binomial distribution
also comes up in the sign test, sometimes called the Binomial test
(see stats::binom.test()
), where you may need the Binomial C.D.F. to
compute p-values.
We recommend reading this documentation on https://alexpghayes.github.io/distributions3/, where the math will render with additional detail.
In the following, let be a Binomial random variable with parameter
size
= and
p
= . Some textbooks define
,
or called
instead of
.
Support:
Mean:
Variance:
Probability mass function (p.m.f):
Cumulative distribution function (c.d.f):
Moment generating function (m.g.f):
Value
A Binomial
object.
See Also
Other discrete distributions:
Bernoulli()
,
Categorical()
,
Geometric()
,
HurdleNegativeBinomial()
,
HurdlePoisson()
,
HyperGeometric()
,
Multinomial()
,
NegativeBinomial()
,
Poisson()
,
ZINegativeBinomial()
,
ZIPoisson()
,
ZTNegativeBinomial()
,
ZTPoisson()
Examples
set.seed(27)
X <- Binomial(10, 0.2)
X
mean(X)
variance(X)
skewness(X)
kurtosis(X)
random(X, 10)
pdf(X, 2L)
log_pdf(X, 2L)
cdf(X, 4L)
quantile(X, 0.7)
cdf(X, quantile(X, 0.7))
quantile(X, cdf(X, 7))