dist_weibull {distributional} | R Documentation |
The Weibull distribution
Description
Generalization of the gamma distribution. Often used in survival and time-to-event analyses.
Usage
dist_weibull(shape, scale)
Arguments
shape , scale |
shape and scale parameters, the latter defaulting to 1. |
Details
We recommend reading this documentation on https://pkg.mitchelloharawild.com/distributional/, where the math will render nicely.
In the following, let X
be a Weibull random variable with
success probability p
= p
.
Support: R^+
and zero.
Mean: \lambda \Gamma(1+1/k)
, where \Gamma
is
the gamma function.
Variance: \lambda [ \Gamma (1 + \frac{2}{k} ) - (\Gamma(1+ \frac{1}{k}))^2 ]
Probability density function (p.d.f):
f(x) = \frac{k}{\lambda}(\frac{x}{\lambda})^{k-1}e^{-(x/\lambda)^k}, x \ge 0
Cumulative distribution function (c.d.f):
F(x) = 1 - e^{-(x/\lambda)^k}, x \ge 0
Moment generating function (m.g.f):
\sum_{n=0}^\infty \frac{t^n\lambda^n}{n!} \Gamma(1+n/k), k \ge 1
See Also
Examples
dist <- dist_weibull(shape = c(0.5, 1, 1.5, 5), scale = rep(1, 4))
dist
mean(dist)
variance(dist)
skewness(dist)
kurtosis(dist)
generate(dist, 10)
density(dist, 2)
density(dist, 2, log = TRUE)
cdf(dist, 4)
quantile(dist, 0.7)