| trafoEst {distrMod} | R Documentation |
Function trafoEst in Package ‘distrMod’
Description
trafoEst takes a \tau like function (compare
trafo-methods) and transforms an existing estimator by means
of this transformation.
Usage
trafoEst(fct, estimator)
Arguments
fct |
a |
estimator |
an object of class |
Details
The disadvantage of this proceeding is that the transformation is not accounted for in determining the estimate (e.g. in a corresponding optimality); it simply transforms an existing estimator, without reapplying it to data. This becomes important in optimally robust estimation.
Value
exactly the argument estimator, but with modified slots
estimate, asvar, and trafo.
Examples
## Gaussian location and scale
NS <- NormLocationScaleFamily(mean=2, sd=3)
## generate data out of this situation
x <- r(distribution(NS))(30)
## want to estimate mu/sigma, sigma^2
## -> without new trafo slot:
mtrafo <- function(param){
mu <- param["mean"]
sd <- param["sd"]
fval <- c(mu/sd, sd^2)
nfval <- c("mu/sig", "sig^2")
names(fval) <- nfval
mat <- matrix(c(1/sd,0,-mu/sd^2,2*sd),2,2)
dimnames(mat) <- list(nfval,c("mean","sd"))
return(list(fval=fval, mat=mat))
}
## Maximum likelihood estimator in the original problem
res0 <- MLEstimator(x = x, ParamFamily = NS)
## transformation
res <- trafoEst(mtrafo, res0)
## confidence interval
confint(res)