ParamFamily {distrMod} | R Documentation |
Generating function for ParamFamily-class
Description
Generates an object of class "ParamFamily"
.
Usage
ParamFamily(name, distribution = Norm(), distrSymm, modifyParam,
main = main(param), nuisance = nuisance(param),
fixed = fixed(param), trafo = trafo(param),
param = ParamFamParameter(name = paste("Parameter of",
name), main = main, nuisance = nuisance,
fixed = fixed, trafo = trafo),
props = character(0),
startPar = NULL, makeOKPar = NULL)
Arguments
name |
character string: name of family |
distribution |
object of class |
distrSymm |
object of class |
startPar |
|
makeOKPar |
|
main |
numeric vector: main parameter |
nuisance |
numeric vector: nuisance parameter |
fixed |
numeric vector: fixed part of the parameter |
trafo |
function in |
param |
object of class |
modifyParam |
function: mapping from the parameter space
(represented by |
props |
character vector: properties of the family |
Details
If name
is missing, the default
“"parametric family of probability measures"” is used.
In case distrSymm
is missing it is set to NoSymmetry()
.
If param
is missing, the parameter is created via
main
, nuisance
and trafo
as described
in ParamFamParameter
.
One has to specify a function which represents a mapping
from the parameter space to the corresponding distribution
space; e.g., in case of normal location a simple version of such
a function would be function(theta){ Norm(mean = theta) }
.
Value
Object of class "ParamFamily"
Author(s)
Matthias Kohl Matthias.Kohl@stamats.de,
Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de
See Also
Examples
## "default" (normal location)
F1 <- ParamFamily(modifyParam = function(theta){ Norm(mean = theta) })
plot(F1)
################################
## Some examples:
################################
## 1. Normal location family
theta <- 0
names(theta) <- "mean"
NL <- ParamFamily(name = "Normal location family",
param = ParamFamParameter(name = "location parameter", main = theta),
distribution = Norm(mean = 0, sd = 1), ## sd known!
startPar = function(x,...) c(min(x),max(x)),
distrSymm <- SphericalSymmetry(SymmCenter = 0),
modifyParam = function(theta){ Norm(mean = theta, sd = 1) },
props = paste(c("The normal location family is invariant under",
"the group of transformations 'g(x) = x + mean'",
"with location parameter 'mean'"), collapse = " "))
NL
## 2. Normal scale family
theta <- 1
names(theta) <- "sd"
NS <- ParamFamily(name = "Normal scale family",
param = ParamFamParameter(name = "scale parameter", main = theta,
.returnClsName = "ParamWithScaleFamParameter"),
distribution = Norm(mean = 0, sd = 1), ## mean known!
startPar = function(x,...) c(0,-min(x)+max(x)),
distrSymm <- SphericalSymmetry(SymmCenter = 0),
modifyParam = function(theta){ Norm(mean = 0, sd = theta) },
props = paste(c("The normal scale family is invariant under",
"the group of transformations 'g(y) = sd*y'",
"with scale parameter 'sd'"), collapse = " "))
NS
## 3. Normal location and scale family
theta <- c(0, 1)
names(theta) <- c("mean", "sd")
NLS <- ParamFamily(name = "Normal location and scale family",
param = ParamFamParameter(name = "location and scale parameter",
main = theta,
.returnClsName = "ParamWithScaleFamParameter"),
distribution = Norm(mean = 0, sd = 1),
startPar = function(x,...) c(median(x),mad(x)),
makeOKPar = function(param) {param[2]<-abs(param[2]); return(param)},
distrSymm <- SphericalSymmetry(SymmCenter = 0),
modifyParam = function(theta){
Norm(mean = theta[1], sd = theta[2])
},
props = paste(c("The normal location and scale family is",
"invariant under the group of transformations",
"'g(x) = sd*x + mean' with location parameter",
"'mean' and scale parameter 'sd'"),
collapse = " "))
NLS
## 4. Binomial family
theta <- 0.3
names(theta) <- "prob"
B <- ParamFamily(name = "Binomial family",
param = ParamFamParameter(name = "probability of success",
main = theta),
startPar = function(x,...) c(0,1),
distribution = Binom(size = 15, prob = 0.3), ## size known!
modifyParam = function(theta){ Binom(size = 15, prob = theta) },
props = paste(c("The Binomial family is symmetric with respect",
"to prob = 0.5; i.e.,",
"d(Binom(size, prob))(k)=d(Binom(size,1-prob))(size-k)"),
collapse = " "))
B
## 5. Poisson family
theta <- 7
names(theta) <- "lambda"
P <- ParamFamily(name = "Poisson family",
param = ParamFamParameter(name = "positive mean", main = theta),
startPar = function(x,...) c(0,max(x)),
distribution = Pois(lambda = 7),
modifyParam = function(theta){ Pois(lambda = theta) })
P
## 6. Exponential scale family
theta <- 2
names(theta) <- "scale"
ES <- ParamFamily(name = "Exponential scale family",
param = ParamFamParameter(name = "scale parameter", main = theta,
.returnClsName = "ParamWithScaleFamParameter"),
startPar = function(x,...) c(0,max(x)-min(x)),
distribution = Exp(rate = 1/2),
modifyParam = function(theta){ Exp(rate = 1/theta) },
props = paste(c("The Exponential scale family is invariant under",
"the group of transformations 'g(y) = scale*y'",
"with scale parameter 'scale = 1/rate'"),
collapse = " " ))
ES
## 7. Lognormal scale family
theta <- 2
names(theta) <- "scale"
LS <- ParamFamily(name = "Lognormal scale family",
param = ParamFamParameter(name = "scale parameter", main = theta,
.returnClsName = "ParamWithScaleFamParameter"),
startPar = function(x,...) c(0,max(x)-min(x)),
distribution = Lnorm(meanlog = log(2), sdlog = 2),## sdlog known!
modifyParam = function(theta){
Lnorm(meanlog = log(theta), sdlog = 2)
},
props = paste(c("The Lognormal scale family is invariant under",
"the group of transformations 'g(y) = scale*y'",
"with scale parameter 'scale = exp(meanlog)'"),
collapse = " "))
LS
## 8. Gamma family
theta <- c(1, 2)
names(theta) <- c("scale", "shape")
G <- ParamFamily(name = "Gamma family",
param = ParamFamParameter(name = "scale and shape", main = theta,
withPosRestr = TRUE,
.returnClsName = "ParamWithScaleAndShapeFamParameter"),
startPar = function(x,...) {E <- mean(x); V <- var(X); c(V/E,E^2/V)},
makeOKPar = function(param) abs(param),
distribution = Gammad(scale = 1, shape = 2),
modifyParam = function(theta){
Gammad(scale = theta[1], shape = theta[2])
},
props = paste(c("The Gamma family is scale invariant via the",
"parametrization '(nu,shape)=(log(scale),shape)'"),
collapse = " "))
G