| CvMDist {distrEx} | R Documentation |
Generic function for the computation of the Cramer - von Mises distance of two distributions
Description
Generic function for the computation of the Cramer - von Mises distance d_\mu
of two distributions P and Q where the distributions are defined
on a finite-dimensional Euclidean space (\R^m,{\cal B}^m)
with {\cal B}^m the Borel-\sigma-algebra on R^m.
The Cramer - von Mises distance is defined as
d_\mu(P,Q)^2=\int\,(P(\{y\in\R^m\,|\,y\le x\})-Q(\{y\in\R^m\,|\,y\le x\}))^2\,\mu(dx)
where \le is coordinatewise on \R^m.
Usage
CvMDist(e1, e2, ...)
## S4 method for signature 'UnivariateDistribution,UnivariateDistribution'
CvMDist(e1, e2, mu = e1, useApply = FALSE, ..., diagnostic = FALSE)
## S4 method for signature 'numeric,UnivariateDistribution'
CvMDist(e1, e2, mu = e1, ..., diagnostic = FALSE)
Arguments
e1 |
object of class |
e2 |
object of class |
... |
further arguments to be used e.g. by |
useApply |
logical; to be passed to |
mu |
object of class |
diagnostic |
logical; if |
Details
Diagnostics on the involved integrations are available if argument
diagnostic is TRUE. Then there is attribute diagnostic
attached to the return value, which may be inspected
and accessed through showDiagnostic and
getDiagnostic.
Value
Cramer - von Mises distance of e1 and e2
Methods
- e1 = "UnivariateDistribution", e2 = "UnivariateDistribution":
-
Cramer - von Mises distance of two univariate distributions.
- e1 = "numeric", e2 = "UnivariateDistribution":
-
Cramer - von Mises distance between the empirical formed from a data set (e1) and a univariate distribution.
Author(s)
Matthias Kohl Matthias.Kohl@stamats.de,
Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de
References
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
See Also
ContaminationSize, TotalVarDist,
HellingerDist, KolmogorovDist,
Distribution-class
Examples
CvMDist(Norm(), UnivarMixingDistribution(Norm(1,2),Norm(0.5,3),
mixCoeff=c(0.2,0.8)))
CvMDist(Norm(), UnivarMixingDistribution(Norm(1,2),Norm(0.5,3),
mixCoeff=c(0.2,0.8)),mu=Norm())
CvMDist(Norm(), Td(10))
CvMDist(Norm(mean = 50, sd = sqrt(25)), Binom(size = 100))
CvMDist(Pois(10), Binom(size = 20))
CvMDist(rnorm(100),Norm())
CvMDist((rbinom(50, size = 20, prob = 0.5)-10)/sqrt(5), Norm())
CvMDist(rbinom(50, size = 20, prob = 0.5), Binom(size = 20, prob = 0.5))
CvMDist(rbinom(50, size = 20, prob = 0.5), Binom(size = 20, prob = 0.5), mu = Pois())