| prob-methods {distr} | R Documentation |
Methods for Function prob in Package ‘distr’
Description
prob-methods
Methods
- prob
signature(object = "BinomParameter"): returns the slotpropof the parameter of the distribution- prob<-
signature(object = "BinomParameter"): modifies the slotprobof the parameter of the distribution- prob
signature(object = "Binom"): returns the slotpropof the parameter of the distribution- prob<-
signature(object = "Binom"): modifies the slotprobof the parameter of the distribution- prob
signature(object = "NbinomParameter"): returns the slotpropof the parameter of the distribution- prob<-
signature(object = "NbinomParameter"): modifies the slotprobof the parameter of the distribution- prob
signature(object = "Nbinom"): returns the slotpropof the parameter of the distribution- prob<-
signature(object = "Nbinom"): modifies the slotprobof the parameter of the distribution- prob
signature(object = "GeomParameter"): returns the slotpropof the parameter of the distribution (deprecated from 1.9 on)- prob<-
signature(object = "GeomParameter"): modifies the slotprobof the parameter of the distribution (deprecated from 1.9 on)- prob
signature(object = "Geom"): returns the slotpropof the parameter of the distribution- prob<-
signature(object = "Geom"): modifies the slotprobof the parameter of the distribution- prob
signature(object = "DiscreteDistribution"): returns the (named) vector of probabilities for the support points of the distribution.- prob<-
signature(object = "DiscreteDistribution"): generates a new object of class"DiscreteDistribution"with the same support asobjectas well as the same.withSim,.withArith,.lowerExact,.logExactslots.- prob
signature(object = "UnivarLebDecDistribution"): returns a2 \times nmatrix where n is the length of the support of the discrete part of the distribution; the first row named"cond"gives the vector of probabilities for the support points of the discrete part of the distribution (i.e.; conditional on being in the discrete part), the second row named"abs"is like the first one but multiplied withdiscreteWeightof the distribution, hence gives the absolute probabilities of the support points; the columns are named by the support values.