prob-methods {distr} | R Documentation |
Methods for Function prob in Package ‘distr’
Description
prob-methods
Methods
- prob
signature(object = "BinomParameter")
: returns the slotprop
of the parameter of the distribution- prob<-
signature(object = "BinomParameter")
: modifies the slotprob
of the parameter of the distribution- prob
signature(object = "Binom")
: returns the slotprop
of the parameter of the distribution- prob<-
signature(object = "Binom")
: modifies the slotprob
of the parameter of the distribution- prob
signature(object = "NbinomParameter")
: returns the slotprop
of the parameter of the distribution- prob<-
signature(object = "NbinomParameter")
: modifies the slotprob
of the parameter of the distribution- prob
signature(object = "Nbinom")
: returns the slotprop
of the parameter of the distribution- prob<-
signature(object = "Nbinom")
: modifies the slotprob
of the parameter of the distribution- prob
signature(object = "GeomParameter")
: returns the slotprop
of the parameter of the distribution (deprecated from 1.9 on)- prob<-
signature(object = "GeomParameter")
: modifies the slotprob
of the parameter of the distribution (deprecated from 1.9 on)- prob
signature(object = "Geom")
: returns the slotprop
of the parameter of the distribution- prob<-
signature(object = "Geom")
: modifies the slotprob
of the parameter of the distribution- prob
signature(object = "DiscreteDistribution")
: returns the (named) vector of probabilities for the support points of the distribution.- prob<-
signature(object = "DiscreteDistribution")
: generates a new object of class"DiscreteDistribution"
with the same support asobject
as well as the same.withSim
,.withArith
,.lowerExact
,.logExact
slots.- prob
signature(object = "UnivarLebDecDistribution")
: returns a2 \times n
matrix where n is the length of the support of the discrete part of the distribution; the first row named"cond"
gives the vector of probabilities for the support points of the discrete part of the distribution (i.e.; conditional on being in the discrete part), the second row named"abs"
is like the first one but multiplied withdiscreteWeight
of the distribution, hence gives the absolute probabilities of the support points; the columns are named by the support values.