| liesInSupport {distr} | R Documentation |
Generic Function for Testing the Support of a Distribution
Description
The function tests if x lies in the support of the
distribution object.
Usage
liesInSupport(object, x, ...)
## S4 method for signature 'UnivarLebDecDistribution,numeric'
liesInSupport(object,x, checkFin = FALSE)
## S4 method for signature 'UnivarMixingDistribution,numeric'
liesInSupport(object,x, checkFin = FALSE)
## S4 method for signature 'LatticeDistribution,numeric'
liesInSupport(object,x, checkFin = FALSE)
## S4 method for signature 'DiscreteDistribution,numeric'
liesInSupport(object,x, checkFin = FALSE)
## S4 method for signature 'AbscontDistribution,numeric'
liesInSupport(object,x, checkFin = FALSE)
## S4 method for signature 'Distribution,matrix'
liesInSupport(object,x, checkFin = FALSE)
## S4 method for signature 'ExpOrGammaOrChisq,numeric'
liesInSupport(object,x, checkFin = TRUE)
## S4 method for signature 'Lnorm,numeric'
liesInSupport(object,x, checkFin = TRUE)
## S4 method for signature 'Fd,numeric'
liesInSupport(object,x, checkFin = TRUE)
## S4 method for signature 'Norm,numeric'
liesInSupport(object,x, checkFin = TRUE)
## S4 method for signature 'DExp,numeric'
liesInSupport(object,x, checkFin = TRUE)
## S4 method for signature 'Cauchy,numeric'
liesInSupport(object,x, checkFin = TRUE)
## S4 method for signature 'Td,numeric'
liesInSupport(object,x, checkFin = TRUE)
## S4 method for signature 'Logis,numeric'
liesInSupport(object,x, checkFin = TRUE)
## S4 method for signature 'Weibull,numeric'
liesInSupport(object,x, checkFin = TRUE)
## S4 method for signature 'Unif,numeric'
liesInSupport(object,x, checkFin = TRUE)
## S4 method for signature 'Beta,numeric'
liesInSupport(object,x, checkFin = TRUE)
Arguments
object |
object of class |
x |
numeric vector or matrix |
checkFin |
logical: in case |
... |
used for specific arguments to particular methods. |
Value
logical vector
Methods
- object = "DiscreteDistribution", x = "numeric":
-
We return a logical vector of the same length as
xwithTRUEwhenxlies in the support ofobject. As support we use the value ofsupport(object), so this is possibly cut to relevant quantile ranges. In casecheckFinisTRUE, in addition, we flag those coordinates toTRUEwherex < min(support(object))ifis.na(object@.finSupport[1])orobject@.finSupport[1]==FALSEorq.l(object)(0)==-Inf, and similarly, wherex > max(support(object))ifis.na(object@.finSupport[2])orobject@.finSupport[2]==FALSEorq.l(object)(1)==Inf. In addition we flag those coordinates toTRUEwhereq.l(object)(0)<=x<min(support(object))ifobject@.finSupport[1]==TRUEand, similarly, whereq.l(object)(1)>=x>max(support(object))ifobject@.finSupport[2]==TRUE. - object = "Distribution", x = "matrix":
-
Argument
xis cast to vector and then the respectiveliesInSupportmethod for vectors is called. The method throws an arror when the dispatch mechanism does not find a suitable, applicable respective vector-method. - object = "AbscontDistribution", x = "numeric":
-
We return a logical vector of the same length as
xwithTRUEwhereq.l(object)(0)<=x<=q.l(object)(1)(and replace the boundary values byq.l(object)(10*.Machine$double.eps)resp.q.l(object)(1-10*.Machine$double.eps)once the return values for0or1return areNaN. - object = "LatticeDistribution", x = "numeric":
-
We return a logical vector of the same length as
xwithTRUEwhenxlies in the support ofobject. As support we use the value ofsupport(object), so this is possibly cut to relevant quantile ranges. In casecheckFinisTRUE, we instead use the lattice information: We check whether all values(x-pivot(lattice(object))/width(lattice(object))are non-negative integers and are non larger thanLength(lattice(object))-1. In addition, we flag those coordinates toTRUEwherex < min(support(object))ifis.na(object@.finSupport[1])orobject@.finSupport[1]==FALSE, and similarly, wherex > max(support(object))ifis.na(object@.finSupport[2])orobject@.finSupport[2]==FALSE. - object = "UnivarLebDecDistribution", x = "numeric":
-
We split up
objectinto discrete and absolutely continuous part and for each of them applyliesInSupportseparately; the two return values are combined by a coponentwise logical|. - object = "UnivarMixingDistribution", x = "numeric":
-
We first cast
objecttoUnivarLebDecDistributionbyflat.mixand then apply the respective method.
Author(s)
Matthias Kohl Matthias.Kohl@stamats.de and Peter Ruckdeschel peter.ruckdeschel@uni-oldenburg.de
See Also
Examples
liesInSupport(Exp(1), rnorm(10))
# note
x <- rpois(10, lambda = 10)
liesInSupport(Pois(1), x)
# better
liesInSupport(Pois(1), x, checkFin = TRUE)
liesInSupport(Pois(1), 1000*x, checkFin = TRUE)
liesInSupport(-10*Pois(1), -10*x+1, checkFin = TRUE)
xs = c(1000*x,runif(10))
D <- UnivarMixingDistribution(Pois(1),Unif())
liesInSupport(D, xs)