| Truncate-methods {distr} | R Documentation |
Methods for function Truncate in Package ‘distr’
Description
Truncate-methods
Usage
Truncate(object, ...)
## S4 method for signature 'AbscontDistribution'
Truncate(object, lower = -Inf, upper = Inf)
## S4 method for signature 'DiscreteDistribution'
Truncate(object, lower= -Inf, upper = Inf)
## S4 method for signature 'LatticeDistribution'
Truncate(object, lower= -Inf, upper = Inf)
## S4 method for signature 'UnivarLebDecDistribution'
Truncate(object, lower = -Inf, upper = Inf,
withSimplify = getdistrOption("simplifyD"))
Arguments
object |
distribution object |
... |
not yet used; takes up |
lower |
numeric; lower truncation point |
upper |
numeric; upper truncation point |
withSimplify |
logical; is result to be piped through a call to
|
Value
the corresponding distribution of the truncated random variable
Methods
- Truncate
signature(object = "AbscontDistribution"): returns the distribution ofmin(upper,max(X,lower))conditioned tolower<=X<=upper, ifXis distributed according toobject; if slot.logExactof argumentobjectisTRUEand if either there is only one-sided truncation or both truncation points lie on the same side of the median, we use this representation to enhance the range of applicability, in particular, for slotr, we profit from Peter Dalgaard's clever log-tricks as indicated in https://stat.ethz.ch/pipermail/r-help/2008-September/174321.html. To this end we use the internal functions (i.e.; non exported to namespace).trunc.upand.trunc.lowwhich provide functional slotsr,d,p,qfor one-sided truncation. In case of two sided truncation, we simply use one-sided truncation successively — first left and then right in case we are right of the median, and the other way round else; the result is again of class"AbscontDistribution";- Truncate
signature(object = "DiscreteDistribution"): returns the distribution ofmin(upper,max(X,lower))conditioned tolower<=X<=upper, ifXis distributed according toobject; the result is again of class"DiscreteDistribution"- Truncate
signature(object = "LatticeDistribution"): if length of the corresp.latticeis infinite and slot.logExactof argumentobjectisTRUE, we proceed similarly as in case ofAbscontDistribution, also using internal functions.trunc.upand.trunc.low; else we use the corresponding"DiscreteDistribution"method; the result is again of class"LatticeDistribution"- Truncate
signature(object = "UnivarLebDecDistribution"): returns the distribution ofmin(upper,max(X,lower))conditioned tolower<=X<=upper, ifXis distributed according toobject; the result is again of class"UnivarLebDecDistribution"
See Also
Examples
plot(Truncate(Norm(),lower=-1,upper=2))
TN <- Truncate(Norm(),lower=15,upper=15.7) ### remarkably right!
plot(TN)
r(TN)(30)
TNG <- Truncate(Geom(prob=0.05),lower=325,upper=329) ### remarkably right!
plot(TNG)