print.mimcr {disprofas} | R Documentation |
Print a summary of MIMCR estimation
Description
This is a method for the function print()
for objects of class
‘mimcr
’.
Usage
## S3 method for class 'mimcr'
print(x, ...)
Arguments
x |
An object of class ‘ |
... |
Further arguments passed to or from other methods or arguments
that can be passed down to the |
Details
The most relevant information in an ‘mimcr
’ object
is printed.
Value
The ‘mimcr
’ object passed to the x
parameter is returned invisibly.
See Also
Examples
# Assessment of data by aid of the mimcr() function
res1 <- mimcr(data = dip1, tcol = 3:10, grouping = "type")
# Print of a summary of the assessment
print(res1)
# Results of Model-Independent Multivariate Confidence Region (MIMCR)
# approach to assess equivalence of highly variable in-vitro
# dissolution profiles of two drug product formulations
#
# Did the Newton-Raphson search converge? Yes
#
# Parameters (general):
# Significance level: 0.05
# Degrees of freedom (1): 7
# Degrees of freedom (2): 4
# Mahalanobis distance (MD): 25.72
# (F) scaling factor K: 0.1714
# (MD) scaling factor k: 3
# Hotelling's T2: 1984
#
# Parameters specific for Tsong (1996) approach:
# Maximum tolerable average difference: 10
# Similarity limit: 11.33
# Observed upper limit: 31.68
#
# Parameters specific for Hoffelder (2016) approach:
# Noncentrality parameter: 385
# Critial F (Hoffelder): 23.16
# Probability p (Hoffelder): 0.7402
#
# Conclusions:
# Tsong (1996): Dissimilar
# Hoffelder (2016): Dissimilar
# Taking only the 15 and 90 minutes testing points into account produces a
# warning because profiles should comprise a minimum of three testing points.
## Not run:
res2 <- mimcr(data = dip1, tcol = c(5, 9), grouping = "type", mtad = 15,
signif = 0.1)
print(res2)
# Warning:
# In mimcr(data = dip1, tcol = c(5, 9), grouping = "type", mtad = 15, :
# The profiles should comprise a minimum of 3 time points. The actual profiles
# comprise 2 points only.
# Results of Model-Independent Multivariate Confidence Region (MIMCR)
# approach to assess equivalence of highly variable in-vitro
# dissolution profiles of two drug product formulations
#
# Did the Newton-Raphson search converge? Yes
#
# Parameters (general):
# Significance level: 0.1
# Degrees of freedom (1): 2
# Degrees of freedom (2): 9
# Mahalanobis distance (MD): 10.44
# (F) scaling factor K: 1.35
# (MD) scaling factor k: 3
# Hotelling's T2: 327
#
# Parameters specific for Tsong (1996) approach:
# Maximum tolerable average difference: 15
# Similarity limit: 9.631
# Observed upper limit: 11.93
#
# Parameters specific for Hoffelder (2016) approach:
# Noncentrality parameter: 278.3
# Critial F (Hoffelder): 83.57
# Probability p (Hoffelder): 0.4823
#
# Conclusions:
# Tsong (1996): Dissimilar
# Hoffelder (2016): Dissimilar
## End(Not run)
# A successful comparison:
res3 <- mimcr(data = dip3, tcol = 4:6, grouping = "batch")
print(res3)
# Results of Model-Independent Multivariate Confidence Region (MIMCR)
# approach to assess equivalence of highly variable in-vitro
# dissolution profiles of two drug product formulations
#
# Did the Newton-Raphson search converge? Yes
#
# Parameters (general):
# Significance level: 0.05
# Degrees of freedom (1): 3
# Degrees of freedom (2): 20
# Mahalanobis distance (MD): 0.2384
# (F) scaling factor K: 1.818
# (MD) scaling factor k: 6
# Hotelling's T2: 0.341
#
# Parameters specific for Tsong (1996) approach:
# Maximum tolerable average difference: 10
# Similarity limit: 2.248
# Observed upper limit: 1.544
#
# Parameters specific for Hoffelder (2016) approach:
# Noncentrality parameter: 30.32
# Critial F (Hoffelder): 4.899
# Probability p (Hoffelder): 2.891e-08
#
# Conclusions:
# Tsong (1996): Similar
# Hoffelder (2016): Similar
[Package disprofas version 0.2.0 Index]