print.bootstrap_f2 {disprofas} | R Documentation |
Print a summary of the bootstrap f2 simulation
Description
This is a method for the function print()
for objects of class
‘bootstrap_f2
’.
Usage
## S3 method for class 'bootstrap_f2'
print(x, ...)
Arguments
x |
An object of class ‘ |
... |
Further arguments passed to or from other methods or arguments
that can be passed down to the |
Details
The elements Boot
and CI
of the
‘bootstrap_f2
’ object that is returned by the function
bootstrap_f2()
are objects of type ‘boot
’ and
‘bootci
’, respectively, generated by the functions
boot()
and boot.ci()
, respectively,
from the ‘boot
’ package. Thus, the corresponding print
methods are used. Arguments to the print.boot()
and
print.bootci()
functions can be passed via the
...
parameter.
Value
The ‘bootstrap_f2
’ object passed to the x
parameter is returned invisibly.
See Also
bootstrap_f2
, boot
,
boot.ci
, print.boot
,
print.bootci
, methods
.
Examples
# Bootstrap assessment of data (two groups) by aid of bootstrap_f2() function
# by using 'rand_mode = "complete"' (the default, randomisation of complete
# profiles)
bs1 <- bootstrap_f2(data = dip2[dip2$batch %in% c("b0", "b4"), ],
tcol = 5:8, grouping = "batch", rand_mode = "complete",
rr = 200, new_seed = 421, use_ema = "no")
# Print of a summary of the assessment
print(bs1)
# STRATIFIED BOOTSTRAP
#
#
# Call:
# boot(data = data, statistic = get_f2, R = R, strata = data[, grouping],
# grouping = grouping, tcol = tcol[ok])
#
#
# Bootstrap Statistics :
# original bias std. error
# t1* 50.07187 -0.02553234 0.9488015
#
#
# BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
# Based on 200 bootstrap replicates
#
# CALL :
# boot.ci(boot.out = t_boot, conf = confid, type = "all", L = jack$loo.values)
#
# Intervals :
# Level Normal Basic
# 90% (48.54, 51.66 ) (48.46, 51.71 )
#
# Level Percentile BCa
# 90% (48.43, 51.68 ) (48.69, 51.99 )
# Calculations and Intervals on Original Scale
# Some BCa intervals may be unstable
#
#
# Shah's lower 90% BCa confidence interval:
# 48.64613
# Use of 'rand_mode = "individual"' (randomisation per time point)
bs2 <- bootstrap_f2(data = dip2[dip2$batch %in% c("b0", "b4"), ],
tcol = 5:8, grouping = "batch", rand_mode = "individual",
rr = 200, new_seed = 421, use_ema = "no")
# Print of a summary of the assessment
print(bs2)
# PARAMETRIC BOOTSTRAP
#
#
# Call:
# boot(data = data, statistic = get_f2, R = R, sim = "parametric",
# ran.gen = rand_indiv_points, mle = mle, grouping = grouping,
# tcol = tcol[ok], ins = seq_along(b1))
#
#
# Bootstrap Statistics :
# original bias std. error
# t1* 50.07187 -0.1215656 0.9535517
#
#
# BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
# Based on 200 bootstrap replicates
#
# CALL :
# boot.ci(boot.out = t_boot, conf = confid, type = "all", L = jack$loo.values)
#
# Intervals :
# Level Normal Basic
# 90% (48.62, 51.76 ) (48.44, 51.64 )
#
# Level Percentile BCa
# 90% (48.50, 51.70 ) (48.88, 52.02 )
# Calculations and Intervals on Original Scale
# Some BCa intervals may be unstable
#
#
# Shah's lower 90% BCa confidence interval:
# 48.82488