check_point_location {disprofas} | R Documentation |
Check point location
Description
The function check_point_location()
checks if points that were found
by the gep_by_nera()
function sit on specified confidence
region bounds (\textit{CRB}
) or not. This is necessary because the
points found by aid of the “Method of Lagrange Multipliers” (MLM)
and “Newton-Raphson” (nera) optimisation may not sit on the
\textit{CRB}
.
Usage
check_point_location(lpt, lhs)
Arguments
lpt |
A list returned by the |
lhs |
A list of the estimates of Hotelling's two-sample |
Details
The function check_point_location()
checks if points that
were found by the gep_by_nera()
function sit on specified
confidence region bounds (\textit{CRB}
) or not. The
gep_by_nera()
function determines the points on the
\textit{CRB}
for each of the n_p
time points or model parameters
by aid of the “Method of Lagrange Multipliers” (MLM) and by
“Newton-Raphson” (nera) optimisation, as proposed by Margaret
Connolly (Connolly 2000). However, since the points found may not sit on
the specified \textit{CRB}
, it must be checked if the points returned
by the gep_by_nera()
function do sit on the \textit{CRB}
or not.
Value
The function returns the list that was passed in via the lpt
parameter with a modified points.on.crb
element, i.e. set as
TRUE
if the points sit on the \textit{CRB}
or FALSE
if
they do not sit on the \textit{CRB}
.
References
Tsong, Y., Hammerstrom, T., Sathe, P.M., and Shah, V.P. Statistical
assessment of mean differences between two dissolution data sets.
Drug Inf J. 1996; 30: 1105-1112.
doi:10.1177/009286159603000427
Connolly, M. SAS(R) IML Code to calculate an upper confidence limit for
multivariate statistical distance; 2000; Wyeth Lederle Vaccines, Pearl River,
NY.
https://analytics.ncsu.edu/sesug/2000/p-902.pdf
See Also
Examples
# Collecting the required information
time_points <- suppressWarnings(as.numeric(gsub("([^0-9])", "",
colnames(dip1))))
tcol <- which(!is.na(time_points))
b1 <- dip1$type == "R"
tol <- 1e-9
# Hotelling's T2 statistics
l_hs <- get_T2_two(m1 = as.matrix(dip1[b1, tcol]),
m2 = as.matrix(dip1[!b1, tcol]),
signif = 0.05)
# Calling gep_by_nera()
res <- gep_by_nera(n_p = as.numeric(l_hs[["Parameters"]]["df1"]),
kk = as.numeric(l_hs[["Parameters"]]["K"]),
mean_diff = l_hs[["means"]][["mean.diff"]],
m_vc = l_hs[["S.pool"]],
ff_crit = as.numeric(l_hs[["Parameters"]]["F.crit"]),
y = rep(1, times = l_hs[["Parameters"]]["df1"] + 1),
max_trial = 100, tol = tol)
# Expected result in res[["points.on.crb"]]
# [1] NA
# Check if points lie on the confidence region bounds (CRB)
check_point_location(lpt = res, lhs = l_hs)
# Expected result in res[["points.on.crb"]]
# [1] TRUE