chiSq {discretization} | R Documentation |
Auxiliary function for discretization using Chi-square statistic
Description
This function is required to perform the discretization based on Chi-square statistic( CACC, Ameva, ChiMerge, Chi2, Modified Chi2, Extended Chi2).
Usage
chiSq(tb)
Arguments
tb |
a vector of observed frequencies |
Details
The formula for computing the \chi^2
value is
\chi^2 = \sum_{i=1}^2 \sum_{j=1}^k \frac{(A_{ij} - E_{ij})^2}{E_{ij}}
k =
number of (no.) classes,
A_{ij} =
no. patterns in the i
th interval, j
th class,
R_i =
no. patterns in the j
th class = \sum_{j=1}^k A_{ij}
,
C_j =
no. patterns in the j
the class = \sum_{i=1}^2 A_{ij}
,
N =
total no. patterns = \sum_{i=1}^2 R_ij
,
E_{ij} =
expected frequency of A_{ij} = R_i * C_j /N
.
If either R_i
or C_j
is 0, E_{ij}
is set to 0.1. The degree of freedom of the \chi^2
statistic is on less the number of classes.
Value
val |
|
Author(s)
HyunJi Kim polaris7867@gmail.com
References
Kerber, R. (1992). ChiMerge : Discretization of numeric attributes, In Proceedings of the Tenth National Conference on Artificial Intelligence, 123–128.
See Also
cacc
,
ameva
,
chiM
,
chi2
,
modChi2
and
extendChi2
.
Examples
#----Calulate Chi-Square
b=c(2,4,1,2,5,3)
m=matrix(b,ncol=3)
chiSq(m)
chisq.test(m)$statistic