caim {discretization} | R Documentation |
Auxiliary function for caim discretization algorithm
Description
This function is required to compute the CAIM value for CAIM iscretization algorithm.
Usage
caim(tb)
Arguments
tb |
a vector of observed frequencies |
Details
The Class-Attrivute Interdependence Maximization(CAIM) discretization algorithm implements in disc.Topdwon(data,method=1)
. The CAIM criterion measures the dependency between the class variable and the discretization variable for attribute, and is defined as :
CAIM=\frac{{\sum_{r=1}^n} \frac{max^2_r}{M_+r} }{n}
for r=1,2, ... , n
, max_r
is the maximum value within the r
th column of the quanta matrix. M_{+r}
is the total number of continuous values of attribute that are within the interval(Kurgan and Cios (2004)).
Author(s)
HyunJi Kim polaris7867@gmail.com
References
Kurgan, L. A. and Cios, K. J. (2004). CAIM Discretization Algorithm, IEEE Transactions on knowledge and data engineering, 16, 145–153.
See Also
disc.Topdown
,
topdown
,
insert
,
findBest
.
Examples
#----Calculating caim value
a=c(3,0,3,0,6,0,0,3,0)
m=matrix(a,ncol=3,byrow=TRUE)
caim(m)