disclapmix2 {disclapmix2} | R Documentation |
Discrete Laplace mixture inference using Numerical Optimisation
Description
An extension to the *disclapmix* method in the *disclapmix* package that supports duplicated loci and other non-standard haplotypes.
Description of your package
Usage
disclapmix2(
x,
number_of_clusters,
include_2_loci = FALSE,
remove_non_standard_haplotypes = TRUE,
use_stripped_data_for_initial_clustering = FALSE,
initial_y_method = "pam",
verbose = 0L
)
Arguments
x |
DataFrame. Columns should be one character vector for each locus |
number_of_clusters |
The number of clusters to fit the model for. |
include_2_loci |
Should duplicated loci be included or excluded from the analysis? |
remove_non_standard_haplotypes |
Should observations that are not single integer alleles be removed? |
use_stripped_data_for_initial_clustering |
Should non_standard data be removed for the initial clustering? |
initial_y_method |
Which cluster method to use for finding initial central haplotypes, y: pam (recommended) or clara. |
verbose |
Set to 1 (or higher) to print optimisation details. Default is 0. |
Value
List.
Author(s)
you
Examples
require(disclapmix)
data(danes)
x <- as.matrix(danes[rep(seq_len(nrow(danes)), danes$n), -ncol(danes)])
x2 <- as.data.frame(sapply(danes[rep(seq_len(nrow(danes)), danes$n), -ncol(danes)], as.character))
dlm_fit <- disclapmix(x, clusters = 3L)
dlm2_fit <- disclapmix2(x2, number_of_clusters = 3)
stopifnot(all.equal(dlm_fit$logL_marginal, dlm2_fit$log_lik))
[Package disclapmix2 version 0.6.1 Index]