plotCumInc {discSurv} | R Documentation |
Plot Estimated Cumulative Incidence Function
Description
Generates a plot of an estimated cumulative incidence function P(T <= t, event=k | x) based on estimated hazards of a discrete competing risks model or a discrete subdistribution hazard model.
Usage
plotCumInc(hazards, eventFocus = NULL, ...)
Arguments
hazards |
Numeric matrix (where each column represents one event) or vector of estimated hazards("numeric matrix"). |
eventFocus |
Column that represent the primary event ("integer vector"). Only applicable in the case of competing risks. |
... |
Further arguments passed to |
Author(s)
Moritz Berger moritz.berger@imbie.uni-bonn.de
https://www.imbie.uni-bonn.de/personen/dr-moritz-berger/
References
Tutz G, Schmid M (2016). Modeling discrete time-to-event data. Springer Series in Statistics.
See Also
estSurv
, estCumInz
, compRisksGEE
Examples
# Example with unemployment data
library(Ecdat)
data(UnempDur)
# Select subsample
SubUnempDur <- UnempDur [1:100, ]
################################
# Competing risks model
# Estimate GEE models for all events
estGEE <- compRisksGEE(datShort = SubUnempDur, dataTransform = "dataLongCompRisks",
corstr = "independence", formulaVariable =~ timeInt + age + ui + logwage * ui,
eventColumns = c("censor1", "censor2", "censor3", "censor4"), timeColumn = "spell")
# Estimate hazards of all events given the covariates of third person
SubUnempDurLong <- dataLongCompRisks(dataShort = SubUnempDur,
eventColumns = c("censor1", "censor2", "censor3", "censor4"), timeColumn = "spell")
preds <- predict(estGEE, subset(SubUnempDurLong, obj == 3))
plotCumInc(preds, eventFocus = 3)
###############################
# Subdistribution hazards model
# Convert to long format
SubUnempDurLong <- dataLongSubDist(dataShort = SubUnempDur, timeColumn = "spell",
eventColumns = c("censor1", "censor2", "censor3", "censor4"), eventFocus = "censor1")
# Estimate continuation ratio model with logit link
glmFit <- glm(formula = y ~ timeInt + age + ui + logwage * ui, data = SubUnempDurLong,
family = binomial(), weights = SubUnempDurLong$subDistWeights)
# Estimated subdistribution hazard given the covariates of the third person
preds <- predict(glmFit, type = "response", newdata = subset(SubUnempDurLong, obj == 3))
plotCumInc(preds)
[Package discSurv version 2.0.0 Index]