minNodePruning {discSurv} | R Documentation |
Minimal Node Size Pruning
Description
Computes optimal minimal node size of a discrete survival tree from a given vector of possible node sizes by cross-validation. Laplace-smoothing can be applied to the estimated hazards.
Usage
minNodePruning(
formula,
data,
treetype = "rpart",
splitruleranger = "hellinger",
sizes,
indexList,
timeColumn,
eventColumn,
lambda = 1,
logOut = FALSE
)
Arguments
formula |
Model formula for tree fitting("class formula") |
data |
Discrete survival data in short format for which a survival tree is to be fitted ("class data.frame"). |
treetype |
Type of tree to be fitted ("character vector"). Possible values are "rpart" or "ranger". The default is to fit an rpart tree; when "ranger" is chosen, a ranger forest with a single tree is fitted. |
splitruleranger |
String specifying the splitting rule of the ranger tree("character vector"). Possible values are either "gini", "extratrees" or "hellinger". Default is "hellinger". |
sizes |
Vector of different node sizes to try ("integer vector"). Values should be non-negative. |
indexList |
List of data partitioning indices for cross-validation ("class list"). Each element represents the test indices of one fold ("integer vector"). |
timeColumn |
Character giving the column name of the observed times in the data argument ("character vector"). |
eventColumn |
Character giving the column name of the event indicator in the data argument ("character vector"). |
lambda |
Parameter for laplace-smoothing. A value of 0 corresponds to no laplace-smoothing ("numeric vector"). |
logOut |
Logical value ("logical vector"). If the argument is set to TRUE, then computation progress will be written to console. |
Details
Computes the out-of-sample log likelihood for all data partitionings for each node size in sizes and returns the node size for which the log likelihood was minimal. Also returns an rpart tree with the optimal minimal node size using the entire data set.
Value
A list containing the two items
Optimal minimal node size - Node size with lowest out-of-sample log-likelihood
tree - a tree object with type corresponding to treetype argument with the optimal minimal node size
Examples
library(pec)
library(caret)
data(cost)
# Take subsample and convert time to years
cost$time <- ceiling(cost$time / 365)
costSub <- cost[1:50, ]
# Specify column names for data augmentation
timeColumn <- "time"
eventColumn <- "status"
# Create data partition for cross validation
indexList <- createFolds(costSub$status * max(costSub$time) + costSub$time, k = 5)
# specify function arguments and perform node size pruning
formula <- y ~ timeInt + prevStroke + age + sex
sizes <- 1:10
optiTree <- minNodePruning(formula, costSub, treetype = "rpart", sizes = sizes,
indexList = indexList, timeColumn = timeColumn, eventColumn = eventColumn,
lambda = 1, logOut = TRUE)