lifeTable {discSurv} | R Documentation |
Life Table Construction and Estimates
Description
Constructs a life table and estimates discrete hazards, survival functions, discrete cumulative hazards and their standard errors without covariates.
Usage
lifeTable(dataShort, timeColumn, eventColumn, intervalLimits = NULL)
## S3 method for class 'discSurvLifeTable'
print(x, ...)
Arguments
dataShort |
Original data in short format ("class data.frame"). |
timeColumn |
Name of the column with discrete survival times ("character vector"). |
eventColumn |
Gives the column name of the event indicator (1=observed, 0=censored) ("character vector"). |
intervalLimits |
Optional names of the intervals for each row, e. g. [a_0, a_1), [a_1, a_2), ..., [a_q-1, a_q) ("character vector") |
x |
Object of class "discSurvLifeTable"("class discSurvLifeTable") |
... |
Additional arguments to the print function |
Value
List containing an object of class "data.frame" with following columns
n Number of individuals at risk in a given time interval (integer)
events Observed number of events in a given time interval (integer)
dropouts Observed number of dropouts in a given time interval (integer)
atRisk Estimated number of individuals at risk, corrected by dropouts (numeric)
hazard Estimated risk of death (without covariates) in a given time interval
seHazard Estimated standard deviation of estimated hazard
S Estimated survival curve
seS Estimated standard deviation of estimated survival function
cumHazard Estimated cumulative hazard function
seCumHazard Estimated standard deviation of the estimated cumulative hazard function
margProb Estimated marginal probability of event in time interval
Author(s)
Thomas Welchowski welchow@imbie.meb.uni-bonn.de
Matthias Schmid matthias.schmid@imbie.uni-bonn.de
References
Tutz G, Schmid M (2016).
Modeling discrete time-to-event data.
Springer Series in Statistics.
Lawless JF (2002).
Statistical Models and Methods for Lifetime Data, 2nd edition.
Wiley series in probability and statistics.
Examples
# Example with unemployment data
library(Ecdat)
data(UnempDur)
# Extract subset of all persons smaller or equal the median of age
UnempDurSubset <- subset(UnempDur, age <= median(UnempDur$age))
LifeTabUnempDur <- lifeTable(dataShort = UnempDurSubset, timeColumn = "spell",
eventColumn = "censor1")
LifeTabUnempDur
# Example with monoclonal gammapothy data
library(survival)
head(mgus)
# Extract subset of mgus
subMgus <- mgus [mgus$futime<=median(mgus$futime), ]
# Transform time in days to intervals [0, 1), [1, 2), [2, 3), ... , [12460, 12461)
mgusInt <- subMgus
mgusInt$futime <- mgusInt$futime + 1
LifeTabGamma <- lifeTable(dataShort = mgusInt, timeColumn= "futime", eventColumn = "death")
head(LifeTabGamma$Output, 25)
plot(x = 1:dim(LifeTabGamma$Output)[1], y = LifeTabGamma$Output$hazard, type = "l",
xlab = "Time interval", ylab = "Hazard", las = 1,
main = "Life table estimated marginal discrete hazards")