gumbel {discSurv} | R Documentation |
Gumbel Link Function
Description
Constructs the link function with gumbel distribution in approriate format for use in generalized, linear models.
Usage
gumbel()
Details
Insert this function into a binary regression model
Author(s)
Thomas Welchowski welchow@imbie.meb.uni-bonn.de
Matthias Schmid matthias.schmid@imbie.uni-bonn.de
References
Tutz G, Schmid M (2016). Modeling discrete time-to-event data. Springer Series in Statistics.
See Also
Examples
# Example with copenhagen stroke study
library(pec)
data(cost)
head(cost)
# Take subsample and convert time to months
costSub <- cost [1:50, ]
costSub$time <- ceiling(costSub$time/30)
costLong <- dataLong(dataShort = costSub, timeColumn = "time", eventColumn = "status",
timeAsFactor=TRUE)
gumbelModel <- glm(formula = y ~ timeInt + diabetes, data = costLong,
family = binomial(link = gumbel()))
# Estimate hazard given prevStroke and no prevStroke
hazPrevStroke <- predict(gumbelModel, newdata=data.frame(timeInt = factor(1:143),
diabetes = factor(rep("yes", 143), levels = c("no", "yes"))), type = "response")
hazWoPrevStroke <- predict(gumbelModel, newdata = data.frame(timeInt = factor(1:143),
diabetes=factor(rep("no", 143), levels = c("no", "yes"))), type = "response")
# Estimate survival function
SurvPrevStroke <- cumprod(1 - hazPrevStroke)
SurvWoPrevStroke <- cumprod(1 - hazWoPrevStroke)
# Example graphics of survival curves with and without diabetes
plot(x = 1:143, y = SurvWoPrevStroke, type = "l", xlab = "Months",
ylab = "S (t|x)", las = 1, lwd = 2, ylim = c(0,1))
lines(x = 1:143, y = SurvPrevStroke, col = "red", lwd = 2)
legend("topright", legend = c("Without diabetes", "Diabetes"),
lty = 1, lwd =2, col = c("black", "red"))
[Package discSurv version 2.0.0 Index]