estMargProb {discSurv} | R Documentation |
Estimated Marginal Probabilities
Description
Estimates the marginal probability P(T=t|x) based on estimated discrete hazards. The discrete hazards may or may not depend on covariates. The covariates have to be equal across all estimated hazard rates. Therefore the given discrete hazards should only vary over time.
Usage
estMargProb(hazards)
Arguments
hazards |
Estimated discrete hazards ("numeric vector") |
Details
The argument hazards must be given for all intervals [a_0, a_1), [a_1, a_2), ..., [a_q-1, a_q), [a_q, Inf).
Value
Estimated marginal probabilities ("numeric vector")
Note
It is assumed that all time points up to the last interval [a_q, Inf) are available. If not already present, these can be added manually.
Author(s)
Thomas Welchowski welchow@imbie.meb.uni-bonn.de
References
Tutz G, Schmid M (2016). Modeling discrete time-to-event data. Springer Series in Statistics.
See Also
Examples
# Example unemployment data
library(Ecdat)
data(UnempDur)
# Select subsample
subUnempDur <- UnempDur [1:100, ]
# Convert to long format
UnempLong <- dataLong(dataShort = subUnempDur, timeColumn = "spell", eventColumn = "censor1")
head(UnempLong)
# Estimate binomial model with logit link
Fit <- glm(formula = y ~ timeInt + age + logwage, data = UnempLong, family = binomial())
# Estimate discrete survival function given age, logwage of first person
hazard <- predict(Fit, newdata = subset(UnempLong, obj == 1), type = "response")
# Estimate marginal probabilities given age, logwage of first person
MarginalProbCondX <- estMargProb (c(hazard, 1))
MarginalProbCondX
sum(MarginalProbCondX)==1 # TRUE: Marginal probabilities must sum to 1!