covarGEE {discSurv} | R Documentation |
GEE covariance of all events for discrete competing risks
Description
Estimates covariance of estimated parameters of all competing events generalized estimation equation models using sandwich approach.
Usage
covarGEE(modelEst)
Arguments
modelEst |
Discrete time competing risks GEE model prediction model ("class dCRGEE"). |
Value
Returns symmetric matrix of rows and columns dimension "number of competing risks" * "number of regression parameters" ("numeric matrix").
Author(s)
Thomas Welchowski welchow@imbie.meb.uni-bonn.de
References
Lee M, Feuer EJ, Fine JP (2018). “On the analysis of discrete time competing risks data.” Biometrics, 74, 1468-1481.
See Also
compRisksGEE
, dataLongCompRisks
, dataLongCompRisksTimeDep
,
geeglm
Examples
# Example with unemployment data
library(Ecdat)
data(UnempDur)
# Select subsample
SubUnempDur <- UnempDur [1:100, ]
# Estimate GEE models for all events
estGEE <- compRisksGEE(datShort = SubUnempDur, dataTransform = "dataLongCompRisks",
corstr = "independence", formulaVariable =~ timeInt + age + ui + logwage * ui,
eventColumns = c("censor1", "censor2", "censor3", "censor4"), timeColumn = "spell")
## Not run:
# Estimate covariance matrix of estimated parameters and competing events
estCovar <- covarGEE(modelEst=estGEE)
estCovar
# Covariances of estimated parameters of one event equal the diagonal blocks
lengthParameters <- length(estGEE[[1]]$coefficients)
noCompEvents <- length(estGEE)
meanAbsError <- rep(NA, noCompEvents)
for( k in 1:noCompEvents ){
relInd <- (1 + (k-1) * lengthParameters) : (k * lengthParameters)
meanAbsError[k] <- mean(abs(estCovar[relInd, relInd] - estGEE[[k]]$geese$vbeta))
}
mean(meanAbsError)
# -> Covariance estimates within each event are equal to diagonal blocks in
# complete covariance matrix with very small differences due to numerical accuracy.
## End(Not run)
[Package discSurv version 2.0.0 Index]