adjDevResid {discSurv}R Documentation

Adjusted Deviance Residuals in short format

Description

Calculates the adjusted deviance residuals for arbitrary prediction models. The adjusted deviance residuals should be approximately normal distributed, in the case of a well fitting model.

Usage

adjDevResid(dataLong, hazards)

Arguments

dataLong

Data set in long format ("class data.frame").

hazards

Estimated discrete hazards of the data in long format("numeric vector"). Hazard rates are probabilities and therefore restricted to the interval [0, 1].

Value

Author(s)

Thomas Welchowski welchow@imbie.meb.uni-bonn.de

References

Tutz G, Schmid M (2016). Modeling discrete time-to-event data. Springer Series in Statistics.

Tutz G (2012). Regression for Categorical Data. Cambridge University Press.

See Also

intPredErr, predErrCurve

Examples


library(survival)

# Transform data to long format
heart[, "stop"] <- ceiling(heart[, "stop"])
set.seed(0)
Indizes <- sample(unique(heart$id), 25)
randSample <- heart[unlist(sapply(1:length(Indizes), 
function(x) which(heart$id == Indizes[x]))),]
heartLong <- dataLongTimeDep(dataSemiLong = randSample, 
timeColumn = "stop", eventColumn = "event", idColumn = "id", timeAsFactor = FALSE)

# Fit a generalized, additive model and predict discrete hazards on data in long format
library(mgcv)
gamFit <- gam(y ~ timeInt + surgery + transplant + s(age), data = heartLong, family = "binomial")
hazPreds <- predict(gamFit, type = "response")

# Calculate adjusted deviance residuals
devResiduals <- adjDevResid(dataLong = heartLong, hazards = hazPreds)$Output$AdjDevResid
devResiduals


[Package discSurv version 2.0.0 Index]