dfzinbt {discFA}R Documentation

Discrete factor analysis with the zero inflated truncated negative binomial distribution.

Description

Discrete factor analysis with the zero inflated truncated negative binomial distribution.

Usage

dfzinbt(y, A, tol = 1e-06)

Arguments

y

Data, an n by d numeric matrix

A

truncation point (Note that if the data is in Likert scale starting from 1, then you should subtract 1 from the data and then use the proposed negative binomial models.

tol

tolerance value for optimizations

Value

A list with entries.

AIC

AIC value for the optimal model

indexmat

Factors and variables in each factor

estpi0

Estimated value of p for the zero inflated part in the negative binomial distributed factor

estr0

Estimated value of r the negative binomial distributed factor(s)

estp0

Estimated value of p the negative binomial distributed factor(s)

estpi

Estimated parameters for the zero inflated part in the negative binomial distributed observations(s)

estr

Estimated value of r negative binomial distributed observations(s)

estp

Estimated value of p negative binomial distributed observations(s)

Examples

dfzinbt(zinb100_Data[1:20,1:3], A = 6)

[Package discFA version 1.0.1 Index]