iris.l1.cluster {directlabels} | R Documentation |
Clustering of the iris data with the l1 clusterpath
Description
The l1 clustering algorithm from the clusterpath package was applied to the iris dataset and the breakpoints in the solution path are stored in this data frame.
Usage
data(iris.l1.cluster)
Format
A data frame with 9643 observations on the following 8 variables.
row
a numeric vector: row of the original iris data matrix
Species
a factor with levels
setosa
versicolor
virginica
: Species from corresponding rowalpha
a numeric vector: the value of the optimal solution.
lambda
a numeric vector: the regularization parameter (ie point in the path).
col
a factor with levels
Sepal.Length
Sepal.Width
Petal.Length
Petal.Width
: column from the original iris data.gamma
a factor with levels
0
: parameter from clustering.norm
a factor with levels
1
parameter from clustering.solver
a factor with levels
path
algorithm used for clustering.
Source
clusterpath package
References
clusterpath article
Examples
data(iris.l1.cluster,package="directlabels")
iris.l1.cluster$y <- iris.l1.cluster$alpha
if(require(ggplot2)){
p <- ggplot(iris.l1.cluster,aes(lambda,y,group=row,colour=Species))+
geom_line(alpha=1/4)+
facet_grid(col~.)
p2 <- p+xlim(-0.0025,max(iris.l1.cluster$lambda))
print(direct.label(p2,list(first.points,get.means)))
}