data_generator {dineR}R Documentation

Data Generator

Description

This functions generates two nn by pp size samples of multivariate normal data. In doing this it also determines and provides the relevant covariance matrices.

Usage

data_generator(n, p, Delta = NULL, case = "sparse", seed = NULL)

Arguments

n

The number of observations generated.

p

The number of dimensions for the generated samples.

Delta

Optional parameter - Provides the differential network that will be used to obtain the sample covariance matrices.

case

Optional parameter - Selects under which case the covariance matrices are determined. Possible cases are: "sparse" - Sparse Case or "asymsparse"- Asymptotically Sparse Case. Defaults to "sparse".

seed

Optional parameter - Allows a seed to be set for reproducibility.

Value

A list of various outputs, namely:

Examples

data <- data_generator(n = 100, p = 50, seed = 123)
data <- data_generator(n = 10, p = 50, case = "asymsparse")

[Package dineR version 1.0.1 Index]