| data_generator {dineR} | R Documentation | 
Data Generator
Description
This functions generates two n by p size samples of multivariate normal
data. In doing this it also determines and provides the relevant covariance
matrices.
Usage
data_generator(n, p, Delta = NULL, case = "sparse", seed = NULL)
Arguments
n | 
 The number of observations generated.  | 
p | 
 The number of dimensions for the generated samples.  | 
Delta | 
 Optional parameter - Provides the differential network that will be used to obtain the sample covariance matrices.  | 
case | 
 Optional parameter - Selects under which case the covariance matrices are determined. Possible cases are: "sparse" - Sparse Case or "asymsparse"- Asymptotically Sparse Case. Defaults to "sparse".  | 
seed | 
 Optional parameter - Allows a seed to be set for reproducibility.  | 
Value
A list of various outputs, namely:
case - The case used.
seed_option - The seed provided.
X - The first multivariate normal sample.
Y - The second multivariate normal sample.
Sigma_X - The covariance matrix of X.
Sigma_Y - The covariance matrix of Y.
Omega_X - The precision matrix of X.
Omega_Y - The precision matrix of Y.
diff_Omega - The difference of precision matrices.
Delta - The target differential network.
Examples
data <- data_generator(n = 100, p = 50, seed = 123)
data <- data_generator(n = 10, p = 50, case = "asymsparse")