blandAltmanLehPlot {digitalDLSorteR} | R Documentation |
Generate Bland-Altman agreement plots between predicted and expected cell type proportions from test data results
Description
Generate Bland-Altman agreement plots between predicted and expected cell
type proportions from test data results. The Bland-Altman agreement plots can
be displayed all mixed or split by cell type (CellType
) or the number
of cell types present in samples (nCellTypes
). See the facet.by
argument and examples for more information.
Usage
blandAltmanLehPlot(
object,
colors,
color.by = "CellType",
facet.by = NULL,
log.2 = FALSE,
filter.sc = TRUE,
density = TRUE,
color.density = "darkblue",
size.point = 0.05,
alpha.point = 1,
ncol = NULL,
nrow = NULL,
title = NULL,
theme = NULL,
...
)
Arguments
object |
|
colors |
Vector of colors to be used. Only vectors with a number of
colors equal to or greater than the levels of |
color.by |
Variable used to color data. Options are |
facet.by |
Variable used to display the data in different panels. If
|
log.2 |
Whether to display the Bland-Altman agreement plot in log2 space
( |
filter.sc |
Boolean indicating whether single-cell profiles are filtered
out and only correlations of results associated with bulk samples are
displayed ( |
density |
Boolean indicating whether density lines must be displayed
( |
color.density |
Color of density lines if the |
size.point |
Size of the points (0.1 by default). |
alpha.point |
Alpha of the points (0.1 by default). |
ncol |
Number of columns if |
nrow |
Number of rows if |
title |
Title of the plot. |
theme |
ggplot2 theme. |
... |
Additional argument for the |
Value
A ggplot object with Bland-Altman agreement plots between expected and actual proportions.
See Also
calculateEvalMetrics
corrExpPredPlot
distErrorPlot
barErrorPlot
Examples
## Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
assays = list(
counts = matrix(
rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))
)
),
colData = data.frame(
Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,
replace = TRUE)
),
rowData = data.frame(
Gene_ID = paste0("Gene", seq(15))
)
)
DDLS <- createDDLSobject(
sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE
)
probMatrixValid <- data.frame(
Cell_Type = paste0("CellType", seq(6)),
from = c(1, 1, 1, 15, 15, 30),
to = c(15, 15, 30, 50, 50, 70)
)
DDLS <- generateBulkCellMatrix(
object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
prob.design = probMatrixValid,
num.bulk.samples = 50,
verbose = TRUE
)
# training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(
object = DDLS,
on.the.fly = TRUE,
batch.size = 15,
num.epochs = 5
)
# evaluation using test data
DDLS <- calculateEvalMetrics(
object = DDLS
)
# Bland-Altman plot by cell type
blandAltmanLehPlot(
object = DDLS,
facet.by = "CellType",
color.by = "CellType"
)
# Bland-Altman plot of all samples mixed
blandAltmanLehPlot(
object = DDLS,
facet.by = NULL,
color.by = "CellType",
alpha.point = 0.3,
log2 = TRUE
)
## End(Not run)