| blandAltmanLehPlot {digitalDLSorteR} | R Documentation |
Generate Bland-Altman agreement plots between predicted and expected cell type proportions from test data results
Description
Generate Bland-Altman agreement plots between predicted and expected cell
type proportions from test data results. The Bland-Altman agreement plots can
be displayed all mixed or split by cell type (CellType) or the number
of cell types present in samples (nCellTypes). See the facet.by
argument and examples for more information.
Usage
blandAltmanLehPlot(
object,
colors,
color.by = "CellType",
facet.by = NULL,
log.2 = FALSE,
filter.sc = TRUE,
density = TRUE,
color.density = "darkblue",
size.point = 0.05,
alpha.point = 1,
ncol = NULL,
nrow = NULL,
title = NULL,
theme = NULL,
...
)
Arguments
object |
|
colors |
Vector of colors to be used. Only vectors with a number of
colors equal to or greater than the levels of |
color.by |
Variable used to color data. Options are |
facet.by |
Variable used to display the data in different panels. If
|
log.2 |
Whether to display the Bland-Altman agreement plot in log2 space
( |
filter.sc |
Boolean indicating whether single-cell profiles are filtered
out and only correlations of results associated with bulk samples are
displayed ( |
density |
Boolean indicating whether density lines must be displayed
( |
color.density |
Color of density lines if the |
size.point |
Size of the points (0.1 by default). |
alpha.point |
Alpha of the points (0.1 by default). |
ncol |
Number of columns if |
nrow |
Number of rows if |
title |
Title of the plot. |
theme |
ggplot2 theme. |
... |
Additional argument for the |
Value
A ggplot object with Bland-Altman agreement plots between expected and actual proportions.
See Also
calculateEvalMetrics corrExpPredPlot
distErrorPlot barErrorPlot
Examples
## Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
assays = list(
counts = matrix(
rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))
)
),
colData = data.frame(
Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,
replace = TRUE)
),
rowData = data.frame(
Gene_ID = paste0("Gene", seq(15))
)
)
DDLS <- createDDLSobject(
sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE
)
probMatrixValid <- data.frame(
Cell_Type = paste0("CellType", seq(6)),
from = c(1, 1, 1, 15, 15, 30),
to = c(15, 15, 30, 50, 50, 70)
)
DDLS <- generateBulkCellMatrix(
object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
prob.design = probMatrixValid,
num.bulk.samples = 50,
verbose = TRUE
)
# training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(
object = DDLS,
on.the.fly = TRUE,
batch.size = 15,
num.epochs = 5
)
# evaluation using test data
DDLS <- calculateEvalMetrics(
object = DDLS
)
# Bland-Altman plot by cell type
blandAltmanLehPlot(
object = DDLS,
facet.by = "CellType",
color.by = "CellType"
)
# Bland-Altman plot of all samples mixed
blandAltmanLehPlot(
object = DDLS,
facet.by = NULL,
color.by = "CellType",
alpha.point = 0.3,
log2 = TRUE
)
## End(Not run)