DPMechBernstein-class {diffpriv} | R Documentation |
An S4 class for the Bernstein mechanism of differential privacy.
Description
A class that implements the Bernstein mechanism (not iterated version) of
differential privacy, for privatizing release of real-valued functions on
[0,1]^l
based on arbitrary datasets. Approximates the target
on a lattice.
Usage
## S4 method for signature 'DPMechBernstein'
show(object)
## S4 method for signature 'DPMechBernstein,DPParamsEps'
releaseResponse(mechanism,
privacyParams, X)
## S4 method for signature 'DPMechBernstein'
sensitivityNorm(mechanism, X1, X2)
Arguments
object |
an instance of class |
mechanism |
an object of class |
privacyParams |
an object of class |
X |
a privacy-sensitive dataset, if using sensitivity sampler a: list, matrix, data frame, numeric/character vector. |
X1 |
a privacy-sensitive dataset. |
X2 |
a privacy-sensitive dataset. |
Value
list with slots per argument, actual privacy parameter and response:
mechanism response with length of target release:
privacyParams, sensitivity, latticeK, dims, target, response
.
scalar numeric norm of non-private target
on datasets.
The L_\infty
of the functions on a lattice.
Methods (by generic)
-
show
: automatically prints the object. -
releaseResponse
: releases Bernstein mechanism responses. -
sensitivityNorm
: measurestarget
sensitivity.
Slots
sensitivity
non-negative scalar numeric maximum absolute
target
sensitivity maximized over the lattice. Defaults toInf
for use withsensitivitySampler()
.target
might be a closure that takes arbitrary dataset and returns a real-valued function on
[0,1]^l
.gammaSensitivity
NA_real_
if inactive, or scalar in [0,1) indicating that responses must be RDP with specific confidence.latticeK
positive scalar integer-valued numeric specifying the lattice resolution. Defaults to (invalid)
NA_integer_
.dims
positive scalar integer-valued numeric specifying the dimension of released function domain. Defaults to (invalid)
NA_integer_
.
References
Francesco Aldà and Benjamin I. P. Rubinstein. "The Bernstein Mechanism: Function Release under Differential Privacy", in Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI'2017), pp. 1705-1711, Feb 2017.
Examples
## See the bernstein vignette