factest {diffIRT} | R Documentation |
Estimating factor scores for diffIRT models
Description
This function estimates the person drift rate and person boundary separation for diffIRT
objects.
Usage
factest(object,start=NULL,se=F, control=list())
Arguments
object |
A |
start |
If |
se |
Logical; Denoting whether standard errors of the parameters should be estimated (can be time consuming, therefore, default is |
control |
a list of control values for the optimisation |
- method
The optimisation method used by
optim
. Default "BFGS".- eps
See
optim
for details and default.- delta
See
optim
for details and default.- trace
See
optim
for details and default.- fnscale
See
optim
for details and default.- parscale
See
optim
for details and default.- maxit
See
optim
for details. Default is 1999.- reltol
See
optim
for details and default.
Details
factest
returns empirical Bayes estimates of the person drift rate and
the person boundary separation. See diffIRT for more explanation concerning the parameters in the
D-diffusion and Q-diffusion IRT model.
Value
Function factest
returns a matrix of parameter estimates and - if se
=T - standard errors.
Author(s)
Dylan Molenaar d.molenaar@uva.nl
References
Navarro, D.J. & Fuss, I.G. (2009). Fast and accurate calculations for first-passagetimes in Wiener diffusion models. Journal of mathematical psychology, 53, 222-230.
Tuerlinckx, F., & De Boeck, P. (2005). Two interpretations of the discrimination parameter. Psychometrika, 70, 629-650.
van der Maas, H.L.J., Molenaar, D., Maris, G., Kievit, R.A., & Borsboom, D. (2011). Cognitive Psychology Meets Psychometric Theory: On the Relation Between Process Models for Decision Making and Latent Variable Models for Individual Differences. Psychological Review, 118, 339-356.
See Also
diffIRT
for fitting diffusion IRT models.
simdiff
for simulating data according to the D-diffusion or Q-diffusion IRT model.
QQdiff
and RespFit for model fit assesment.
Examples
## Not run:
# simulate data accroding to D-diffusion model
data=simdiff(N=100,nit=10,model="D")
# fit an unconstrained model
res1=diffIRT(data$rt,data$x,model="D")
# estimate factor scores
fs=factest(res1)
## End(Not run)