predict.difNLR {difNLR} | R Documentation |
Predicted values for an object of "difNLR"
class.
Description
S3 method for predictions from the model used in the
object of "difNLR"
class.
Usage
## S3 method for class 'difNLR'
predict(
object,
item = "all",
match,
group,
interval = "none",
level = 0.95,
...
)
Arguments
object |
an object of |
item |
numeric or character: either character |
match |
numeric: matching criterion for new observations. |
group |
numeric: group membership for new observations. |
interval |
character: type of interval calculation, either
|
level |
numeric: confidence level. |
... |
other generic parameters for |
Author(s)
Adela Hladka (nee Drabinova)
Institute of Computer Science of the Czech Academy of Sciences
Faculty of Mathematics and Physics, Charles University
hladka@cs.cas.cz
Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
martinkova@cs.cas.cz
Karel Zvara
Faculty of Mathematics and Physics, Charles University
References
Drabinova, A. & Martinkova, P. (2017). Detection of differential item functioning with nonlinear regression: A non-IRT approach accounting for guessing. Journal of Educational Measurement, 54(4), 498–517, doi:10.1111/jedm.12158.
Hladka, A. & Martinkova, P. (2020). difNLR: Generalized logistic regression models for DIF and DDF detection. The R Journal, 12(1), 300–323, doi:10.32614/RJ-2020-014.
Swaminathan, H. & Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27(4), 361–370, doi:10.1111/j.1745-3984.1990.tb00754.x
See Also
difNLR
for DIF detection among binary data using generalized logistic regression model.
predict
for generic function for prediction.
Examples
## Not run:
# loading data
data(GMAT)
Data <- GMAT[, 1:20] # items
group <- GMAT[, "group"] # group membership variable
# testing both DIF effects using likelihood-ratio test and
# 3PL model with fixed guessing for groups
(x <- difNLR(Data, group, focal.name = 1, model = "3PLcg"))
# predicted values
summary(predict(x))
predict(x, item = 1)
predict(x, item = "Item1")
# predicted values for new observations - average score
predict(x, item = 1, match = 0, group = 0) # reference group
predict(x, item = 1, match = 0, group = 1) # focal group
# predicted values for new observations - various z-scores and groups
new.match <- rep(c(-1, 0, 1), 2)
new.group <- rep(c(0, 1), each = 3)
predict(x, item = 1, match = new.match, group = new.group)
# predicted values for new observations with confidence intervals
predict(x, item = 1, match = new.match, group = new.group, interval = "confidence")
predict(x, item = c(2, 4), match = new.match, group = new.group, interval = "confidence")
## End(Not run)