| cvm.test {dgof} | R Documentation |
Discrete Cramer-von Mises Goodness-of-Fit Tests
Description
Computes the test statistics for doing one-sample Cramer-von Mises goodness-of-fit tests and calculates asymptotic p-values.
Usage
cvm.test(x, y, type = c("W2", "U2", "A2"),
simulate.p.value=FALSE, B=2000, tol=1e-8)
Arguments
x |
a numerical vector of data values. |
y |
an |
type |
the variant of the Cramer-von Mises test; |
simulate.p.value |
a logical indicating whether to compute p-values by Monte Carlo simulation. |
B |
an integer specifying the number of replicates used in the Monte Carlo test (for discrete goodness-of-fit tests only). |
tol |
used as an upper bound for possible rounding error in values
(say, |
Details
While the Kolmogorov-Smirnov test may be the most popular of the nonparametric goodness-of-fit tests, Cramer-von Mises tests have been shown to be more powerful against a large class of alternatives hypotheses. The original test was developed by Harald Cramer and Richard von Mises (Cramer, 1928; von Mises, 1928) and further adapted by Anderson and Darling (1952), and Watson (1961).
Value
An object of class htest.
Note
Additional notes?
Author(s)
Taylor B. Arnold and John W. Emerson
Maintainer: Taylor B. Arnold <taylor.arnold@yale.edu>
References
T. W. Anderson and D. A. Darling (1952). Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes. Annals of Mathematical Statistics, 23:193-212.
V. Choulakian, R. A. Lockhart, and M. A. Stephens (1994). Cramer-von Mises statistics for discrete distributions. The Canadian Journal of Statistics, 22(1): 125-137.
H. Cramer (1928). On the composition of elementary errors. Skand. Akt., 11:141-180.
M. A. Stephens (1974). Edf statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69(347): 730-737.
R. E. von Mises (1928). Wahrscheinlichkeit, Statistik und Wahrheit. Julius Springer, Vienna, Austria.
G. S. Watson (1961). Goodness of fit tests on the circle. Biometrika, 48:109-114.
See Also
Examples
require(dgof)
x3 <- sample(1:10, 25, replace=TRUE)
# Using ecdf() to specify a discrete distribution:
ks.test(x3, ecdf(1:10))
cvm.test(x3, ecdf(1:10))
# Using step() to specify the same discrete distribution:
myfun <- stepfun(1:10, cumsum(c(0, rep(0.1, 10))))
ks.test(x3, myfun)
cvm.test(x3, myfun)
# Usage of U2 for cyclical distributions (note U2 unchanged, but W2 not)
set.seed(1)
y <- sample(1:4, 20, replace=TRUE)
cvm.test(y, ecdf(1:4), type='W2')
cvm.test(y, ecdf(1:4), type='U2')
z <- y
cvm.test(z, ecdf(1:4), type='W2')
cvm.test(z, ecdf(1:4), type = 'U2')
# Compare analytic results to simulation results
set.seed(1)
y <- sample(1:3, 10, replace=TRUE)
cvm.test(y, ecdf(1:6), simulate.p.value=FALSE)
cvm.test(y, ecdf(1:6), simulate.p.value=TRUE)