anova.dglm {dglm} | R Documentation |
Analysis of Deviance for Double Generalized Linear Model Fits
Description
Compute an analysis of deviance table for one or more double generalized linear model fits.
Usage
## S3 method for class 'dglm'
anova(object, ...)
Arguments
object |
objects of class |
... |
Not used. |
Details
Specifying a single object gives sequential and adjusted likelihood ratio tests for the mean and dispersion model components of the fit. The aim is to test overall significance for the mean and dispersion components of the double generalized linear model fit. The sequential tests (i) set both mean and dispersion models constant, add the mean model and (ii) sequentially add the dispersion model. The adjusted tests determine whether the mean and dispersion models can be set constant separately.
Value
An object of class "anova"
inheriting from class "data.frame"
.
Note
The anova method is questionable when applied to an "dglm"
object with
method="reml"
(stick to method="ml"
).
Author(s)
Gordon Smyth, ported to R by Peter Dunn (pdunn2@usc.edu.au)
References
Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in S, edited by J. M. Chambers and T. J. Hastie, Wadsworth and Brooks/Cole.
Smyth, G. K. (1989). Generalized linear models with varying dispersion. J. R. Statist. Soc. B, 51, 47–60. doi:10.1111/j.2517-6161.1989.tb01747.x
Smyth, G. K., and Verbyla, A. P. (1999). Adjusted likelihood methods for modelling dispersion in generalized linear models. Environmetrics, 10, 696-709. doi:10.1002/(SICI)1099-095X(199911/12)10:6<695::AID-ENV385>3.0.CO;2-M https://gksmyth.github.io/pubs/Ties98-Preprint.pdf
Smyth, G. K., and Verbyla, A. P. (1999). Double generalized linear models: approximate REML and diagnostics. In Statistical Modelling: Proceedings of the 14th International Workshop on Statistical Modelling, Graz, Austria, July 19-23, 1999, H. Friedl, A. Berghold, G. Kauermann (eds.), Technical University, Graz, Austria, pages 66-80. https://gksmyth.github.io/pubs/iwsm99-Preprint.pdf