gdf {dglars} | R Documentation |
Estimate the Generalized Degrees-of-Freedom
Description
gdf
returns to estimate of the generalized degrees-of-freedom.
Usage
gdf(object)
Arguments
object |
fitted |
Details
For a general nonlinear modelling procedure, a rigorous definition of
degrees-of-freedom is obtained using the covariance penalty theory
(Efron, 2004). This theory was used in Augugliaro et al. (2013) to
define a measure of model complexity for the dgLARS method, called
“generalized degrees-of-freedom”. The gdf
function
implements the estimator proposed in Augugliaro et al. (2013).
Value
gdf
returns a vector of length np
with the generalized degrees-of-freedom.
Author(s)
Luigi Augugliaro and Hassan Pazira
Maintainer: Luigi Augugliaro luigi.augugliaro@unipa.it
References
Augugliaro L., Mineo A.M. and Wit E.C. (2014) <doi:10.18637/jss.v059.i08> dglars: An R Package to Estimate Sparse Generalized Linear Models, Journal of Statistical Software, Vol 59(8), 1-40. https://www.jstatsoft.org/v59/i08/.
Augugliaro L., Mineo A.M. and Wit E.C. (2013) <doi:10.1111/rssb.12000> dgLARS: a differential geometric approach to sparse generalized linear models, Journal of the Royal Statistical Society. Series B., Vol 75(3), 471-498.
Efron B. (2004) <doi:10.1198/016214504000000692> The estimation of prediction error: covariance penalties and cross-validation, Journal of the American Statistical Association, Vol. 99(467), 619-632.
See Also
dglars
, AIC.dglars
, BIC.dglars
and summary.dglars
.
Examples
set.seed(123)
n <- 100
p <- 10
X <- matrix(rnorm(n*p), n, p)
b <- 1:2
eta <- b[1] + X[,1] * b[2]
mu <- binomial()$linkinv(eta)
y <- rbinom(n, 1, mu)
fit <- dglars(y ~ X, binomial)
gdf(fit)