simulate_simple_dfrr {dfrr} | R Documentation |
Simulating a Simple dfrr
Model
Description
Simulation from a simple dfrr model:
Y_{i}(t)=I(\beta_0(t)+\beta_1(t)*x_{i}+\varepsilon_{i}(t)+\epsilon_{i}(t)\times\sigma^2>0),
where I(.)
is the indicator function, \varepsilon_{i}
is a Gaussian random function, and \epsilon_{i}(t)
are iid standard normal for each i
and t
independent of \varepsilon_{i}
.
For demonstration purpose only.
Usage
simulate_simple_dfrr(
beta0 = function(t) {
cos(pi * t + pi)
},
beta1 = function(t) {
2 * t
},
X = rnorm(50),
time = seq(0, 1, length.out = 24),
sigma2 = 0.2
)
Arguments
beta0 , beta1 |
(optional) functional intercept and slope parameters |
X |
an (optional) vector consists of scalar covariate |
time |
an (optional) vector of time points for which, each sample curve is observed at. |
sigma2 |
variance of the measurement error in the |
Value
This function returns a martix of binary values of dimension NxM where N denotes the length of X and M stands for the length of time.
Examples
N<-50;M<-24
X<-rnorm(N,mean=0)
time<-seq(0,1,length.out=M)
Y<-simulate_simple_dfrr(beta0=function(t){cos(pi*t+pi)},
beta1=function(t){2*t},
X=X,time=time)
[Package dfrr version 0.1.5 Index]